IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006607.html
   My bibliography  Save this article

Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors

Author

Listed:
  • Isao T Tokuda
  • Daisuke Ono
  • Sato Honma
  • Ken-Ichi Honma
  • Hanspeter Herzel

Abstract

Circadian clocks are autonomous oscillators driving daily rhythms in physiology and behavior. In mammals, a network of coupled neurons in the suprachiasmatic nucleus (SCN) is entrained to environmental light-dark cycles and orchestrates the timing of peripheral organs. In each neuron, transcriptional feedbacks generate noisy oscillations. Coupling mediated by neuropeptides such as VIP and AVP lends precision and robustness to circadian rhythms. The detailed coupling mechanisms between SCN neurons are debated. We analyze organotypic SCN slices from neonatal and adult mice in wild-type and multiple knockout conditions. Different degrees of rhythmicity are quantified by pixel-level analysis of bioluminescence data. We use empirical orthogonal functions (EOFs) to characterize spatio-temporal patterns. Simulations of coupled stochastic single cell oscillators can reproduce the diversity of observed patterns. Our combination of data analysis and modeling provides deeper insight into the enormous complexity of the data: (1) Neonatal slices are typically stronger oscillators than adult slices pointing to developmental changes of coupling. (2) Wild-type slices are completely synchronized and exhibit specific spatio-temporal patterns of phases. (3) Some slices of Cry double knockouts obey impaired synchrony that can lead to co–existing rhythms (“splitting”). (4) The loss of VIP-coupling leads to desynchronized rhythms with few residual local clusters. Additional information was extracted from co–culturing slices with rhythmic neonatal wild-type SCNs. These co–culturing experiments were simulated using external forcing terms representing VIP and AVP signaling. The rescue of rhythmicity via co–culturing lead to surprising results, since a cocktail of AVP-antagonists improved synchrony. Our modeling suggests that these counter-intuitive observations are pointing to an antagonistic action of VIP and AVP coupling. Our systematic theoretical and experimental study shows that dual coupling mechanisms can explain the astonishing complexity of spatio-temporal patterns in SCN slices.Author summary: The mammalian circadian clock is orchestrated by a network of coupled neurons. Brain slice preparations allow the analysis of coupling mechanisms mediated by neuropeptides. From bioluminescence recordings, we extract single cell characteristics such as period, amplitude and damping rate. Our data-based stochastic network model involves local coupling between cells and additional external forcing. Available experimental data guide our simulations with two distinct coupling and forcing mechanisms representing the neuropeptides VIP and AVP. We compare our simulations with experiments from neonatal and adult wild-type brain slices and multiple knockouts. Furthermore, we study co–culturing of slices with synchronized neonatal wild-type slices. The extreme complexity of the spatio-temporal patterns is quantified using empirical orthogonal functions (EOFs). The experimental reduction of AVP coupling leads to surprising observations. In double knockouts, inhibition of AVP signaling can improve synchrony, whereas, in triple knockouts, coherency is reduced. Our network modeling shows that these counter-intuitive observations can be explained by an antagonistic action of VIP and AVP signaling. The agreement of experiments and simulations suggests that quite complex spatio-temporal patterns can appear as emergent properties of oscillator networks with dual coupling mechanisms.

Suggested Citation

  • Isao T Tokuda & Daisuke Ono & Sato Honma & Ken-Ichi Honma & Hanspeter Herzel, 2018. "Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-21, December.
  • Handle: RePEc:plo:pcbi00:1006607
    DOI: 10.1371/journal.pcbi.1006607
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006607
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006607&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.