IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006503.html
   My bibliography  Save this article

Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter

Author

Listed:
  • Yarden Golan
  • Raphael Alhadeff
  • Fabian Glaser
  • Assaf Ganoth
  • Arieh Warshel
  • Yehuda G Assaraf

Abstract

Multiscale modeling provides a very powerful means of studying complex biological systems. An important component of this strategy involves coarse-grained (CG) simplifications of regions of the system, which allow effective exploration of complex systems. Here we studied aspects of CG modeling of the human zinc transporter ZnT2. Zinc is an essential trace element with 10% of the proteins in the human proteome capable of zinc binding. Thus, zinc deficiency or impairment of zinc homeostasis disrupt key cellular functions. Mammalian zinc transport proceeds via two transporter families: ZnT and ZIP; however, little is known about the zinc permeation pathway through these transporters. As a step towards this end, we herein undertook comprehensive computational analyses employing multiscale techniques, focusing on the human zinc transporter ZnT2 and its bacterial homologue, YiiP. Energy calculations revealed a favorable pathway for zinc translocation via alternating access. We then identified key residues presumably involved in the passage of zinc ions through ZnT2 and YiiP, and functionally validated their role in zinc transport using site-directed mutagenesis of ZnT2 residues. Finally, we use a CG Monte Carlo simulation approach to sample the transition between the inward-facing and the outward-facing states. We present our structural models of the inward- and outward-facing conformations of ZnT2 as a blueprint prototype of the transporter conformations, including the putative permeation pathway and participating residues. The insights gained from this study may facilitate the delineation of the pathways of other zinc transporters, laying the foundations for the molecular basis underlying ion permeation. This may possibly facilitate the development of therapeutic interventions in pathological states associated with zinc deficiency and other disorders based on loss-of-function mutations in solute carriers.Author summary: Herein we employed multiscale modeling and electrostatic energy calculations to delineate, for the first time, a putative zinc permeation pathway, from the cytoplasm into intracellular vesicles (for ZnT2) or to the extracellular milieu (for YiiP), along the membrane-spanning domain of the human zinc transporter ZnT2 and its E. coli homologue, YiiP. These computational findings were functionally validated using site-directed mutagenesis of ZnT2 residues predicted to reside along the putative zinc permeation pathway and zinc transport assay. Our results shed light on the transport mechanisms of ZnT2 and YiiP and pave the way towards the elucidation of the zinc translocation mechanism in other ZnT family members. Furthermore, these findings could also be harnessed to the possible development of therapeutic interventions in zinc-associated pathologies.

Suggested Citation

  • Yarden Golan & Raphael Alhadeff & Fabian Glaser & Assaf Ganoth & Arieh Warshel & Yehuda G Assaraf, 2018. "Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-21, November.
  • Handle: RePEc:plo:pcbi00:1006503
    DOI: 10.1371/journal.pcbi.1006503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006503
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.