IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006497.html
   My bibliography  Save this article

Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity

Author

Listed:
  • Makoto Fukushima
  • Olaf Sporns

Abstract

Dynamic models of large-scale brain activity have been used for reproducing many empirical findings on human brain functional connectivity. Features that have been shown to be reproducible by comparing modeled to empirical data include functional connectivity measured over several minutes of resting-state functional magnetic resonance imaging, as well as its time-resolved fluctuations on a time scale of tens of seconds. However, comparison of modeled and empirical data has not been conducted yet for fluctuations in global network topology of functional connectivity, such as fluctuations between segregated and integrated topology or between high and low modularity topology. Since these global network-level fluctuations have been shown to be related to human cognition and behavior, there is an emerging need for clarifying their reproducibility with computational models. To address this problem, we directly compared fluctuations in global network topology of functional connectivity between modeled and empirical data, and clarified the degree to which a stationary model of spontaneous brain dynamics can reproduce the empirically observed fluctuations. Modeled fluctuations were simulated using a system of coupled phase oscillators wired according to brain structural connectivity. By performing model parameter search, we found that modeled fluctuations in global metrics quantifying network integration and modularity had more than 80% of magnitudes of those observed in the empirical data. Temporal properties of network states determined based on fluctuations in these metrics were also found to be reproducible, although their spatial patterns in functional connectivity did not perfectly matched. These results suggest that stationary models simulating resting-state activity can reproduce the magnitude of empirical fluctuations in segregation and integration, whereas additional factors, such as active mechanisms controlling non-stationary dynamics and/or greater accuracy of mapping brain structural connectivity, would be necessary for fully reproducing the spatial patterning associated with these fluctuations.Author summary: In human neuroscience, there is growing interest in temporal fluctuations in coactivation patterns of resting-state brain activity. To elucidate generative mechanisms of these fluctuations, theoretical studies try to reproduce their empirical properties by simulations using dynamic models of large-scale spontaneous brain activity. However, evaluations of the reproducibility have not been extended so far to the fluctuations in global network topology of coactivation patterns, recently shown to be related to human cognition and behavior. Here we examine the extent to which a stationary model typically used for simulating resting-state activity can reproduce spatial and temporal patterns of the empirically observed fluctuations in global network topology. We found that such a model successfully reproduced the magnitude of empirical fluctuations as well as their temporal dynamics, whereas their spatial patterning was not fully accounted for by the simulation. Our results suggest that stationary models can explain many empirical properties in the fluctuations in global network topology, while modeling of non-stationary dynamics and/or greater estimation accuracy of anatomical connections underlying the simulation would be required for complete replication. This finding provides new insights into how fluctuations in global network topology of coactivation patterns emerge in the human brain.

Suggested Citation

  • Makoto Fukushima & Olaf Sporns, 2018. "Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-27, September.
  • Handle: RePEc:plo:pcbi00:1006497
    DOI: 10.1371/journal.pcbi.1006497
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006497
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006497&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.