IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006470.html
   My bibliography  Save this article

Linking signal detection theory and encoding models to reveal independent neural representations from neuroimaging data

Author

Listed:
  • Fabian A Soto
  • Lauren E Vucovich
  • F Gregory Ashby

Abstract

Many research questions in visual perception involve determining whether stimulus properties are represented and processed independently. In visual neuroscience, there is great interest in determining whether important object dimensions are represented independently in the brain. For example, theories of face recognition have proposed either completely or partially independent processing of identity and emotional expression. Unfortunately, most previous research has only vaguely defined what is meant by “independence,” which hinders its precise quantification and testing. This article develops a new quantitative framework that links signal detection theory from psychophysics and encoding models from computational neuroscience, focusing on a special form of independence defined in the psychophysics literature: perceptual separability. The new theory allowed us, for the first time, to precisely define separability of neural representations and to theoretically link behavioral and brain measures of separability. The framework formally specifies the relation between these different levels of perceptual and brain representation, providing the tools for a truly integrative research approach. In particular, the theory identifies exactly what valid inferences can be made about independent encoding of stimulus dimensions from the results of multivariate analyses of neuroimaging data and psychophysical studies. In addition, commonly used operational tests of independence are re-interpreted within this new theoretical framework, providing insights on their correct use and interpretation. Finally, we apply this new framework to the study of separability of brain representations of face identity and emotional expression (neutral/sad) in a human fMRI study with male and female participants.Author summary: A common question in vision research is whether certain stimulus properties, like face identity and expression, are represented and processed independently. We develop a theoretical framework that allowed us, for the first time, to link behavioral and brain measures of independence. Unlike previous approaches, our framework formally specifies the relation between these different levels of perceptual and brain representation, providing the tools for a truly integrative research approach in the study of independence. This allows to identify what kind of inferences can be made about brain representations from multivariate analyses of neuroimaging data or psychophysical studies. We apply this framework to the study of independent processing of face identity and expression.

Suggested Citation

  • Fabian A Soto & Lauren E Vucovich & F Gregory Ashby, 2018. "Linking signal detection theory and encoding models to reveal independent neural representations from neuroimaging data," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-42, October.
  • Handle: RePEc:plo:pcbi00:1006470
    DOI: 10.1371/journal.pcbi.1006470
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006470
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006470&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.