IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006461.html
   My bibliography  Save this article

Virus and CTL dynamics in the extrafollicular and follicular tissue compartments in SIV-infected macaques

Author

Listed:
  • Dominik Wodarz
  • Pamela J Skinner
  • David N Levy
  • Elizabeth Connick

Abstract

Data from SIV-infected macaques indicate that virus-specific cytotoxic T lymphocytes (CTL) are mostly present in the extrafollicular (EF) compartment of the lymphoid tissue, with reduced homing to the follicular (F) site. This contributes to the majority of the virus being present in the follicle and represents a barrier to virus control. Using mathematical models, we investigate these dynamics. Two models are analyzed. The first assumes that CTL can only become stimulated and expand in the extrafollicular compartment, with migration accounting for the presence of CTL in the follicle. In the second model, follicular CTL can also undergo antigen-induced expansion. Consistent with experimental data, both models predict increased virus compartmentalization in the presence of stronger CTL responses and lower virus loads, and a more pronounced rise of extrafollicular compared to follicular virus during CD8 cell depletion experiments. The models, however, differ in other aspects. The follicular expansion model results in dynamics that promote the clearance of productive infection in the extrafollicular site, with any productively infected cells found being the result of immigration from the follicle. This is not observed in the model without follicular CTL expansion. The models further predict different consequences of introducing engineered, follicular-homing CTL, which has been proposed as a therapeutic means to improve virus control. Without follicular CTL expansion, this is predicted to result in a reduction of virus load in both compartments. The follicular CTL expansion model, however, makes the counter-intuitive prediction that addition of F-homing CTL not only results in a reduction of follicular virus load, but also in an increase in extrafollicular virus replication. These predictions remain to be experimentally tested, which will be relevant for distinguishing between models and for understanding how therapeutic introduction of F-homing CTL might impact the overall dynamics of the infection.Author summary: A better understanding of immune response dynamics and virus control in HIV infection is an important goal of current research. While measurements are often recorded in the blood, intricate dynamics occur in the lymphoid tissue. Recent data indicate that killer T cell responses, or CTL, show reduced homing to the follicular compartment of the lymphoid tissue, while the majority of the CTL remain in the extrafollicular site, which appears to contribute to the observed unequal distribution of virus load in the two locations. Here, these dynamics are studied with 2-compartment mathematical models. They reproduce previously published as well as newly presented experimental data from CTL depletion studies. Beyond this, the models indicate that so far unknown details of the CTL dynamics, in particular the potential of CTL to undergo antigen-induced expansion in the follicular compartment, can be important determinants of outcome. We find that antigen-induced expansion of CTL in the follicular site can result in more pronounced virus compartmentalization, and essentially in clearance of virus-producing cells from the extrafollicular site. We use the models to predict how experimental addition of engineered, follicular-homing CTL to macaques, influence the overall infection dynamics and level of virus control. Understanding these dynamics is an important step in attempts to improve the level of immune-mediated virus control.

Suggested Citation

  • Dominik Wodarz & Pamela J Skinner & David N Levy & Elizabeth Connick, 2018. "Virus and CTL dynamics in the extrafollicular and follicular tissue compartments in SIV-infected macaques," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-19, October.
  • Handle: RePEc:plo:pcbi00:1006461
    DOI: 10.1371/journal.pcbi.1006461
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006461
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006461&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.