IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006370.html
   My bibliography  Save this article

Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner

Author

Listed:
  • Massimo Silvetti
  • Eliana Vassena
  • Elger Abrahamse
  • Tom Verguts

Abstract

Optimal decision-making is based on integrating information from several dimensions of decisional space (e.g., reward expectation, cost estimation, effort exertion). Despite considerable empirical and theoretical efforts, the computational and neural bases of such multidimensional integration have remained largely elusive. Here we propose that the current theoretical stalemate may be broken by considering the computational properties of a cortical-subcortical circuit involving the dorsal anterior cingulate cortex (dACC) and the brainstem neuromodulatory nuclei: ventral tegmental area (VTA) and locus coeruleus (LC). From this perspective, the dACC optimizes decisions about stimuli and actions, and using the same computational machinery, it also modulates cortical functions (meta-learning), via neuromodulatory control (VTA and LC). We implemented this theory in a novel neuro-computational model–the Reinforcement Meta Learner (RML). We outline how the RML captures critical empirical findings from an unprecedented range of theoretical domains, and parsimoniously integrates various previous proposals on dACC functioning.Author summary: A major challenge for all organisms is selecting optimal behaviour to obtain resources while minimizing energetic and other expenses. Evolution provided mammals with exceptional decision-making capabilities to face this challenge. Even though neuroscientists have identified a heterogeneous and distributed set of brain structures to be involved, a comprehensive theory about the biological and computational basis of such decision-making is yet to be formulated. We propose that the interaction between the medial prefrontal cortex (a part of the frontal lobes) and the subcortical nuclei releasing catecholaminergic neuromodulators will be key to such a theory. We argue that this interaction allows both the selection of optimal behaviour and, more importantly, the optimal modulation of the very brain circuits that drive such behavioral selection (i.e., meta-learning). We implemented this theory in a novel neuro-computational model, the Reinforcement Meta-Learner (RML). By means of computer simulations we showed that the RML provides a biological and computational account for a set of neuroscientific data with unprecedented scope, thereby suggesting a critical mechanism of decision-making in the mammalian brain.

Suggested Citation

  • Massimo Silvetti & Eliana Vassena & Elger Abrahamse & Tom Verguts, 2018. "Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-32, August.
  • Handle: RePEc:plo:pcbi00:1006370
    DOI: 10.1371/journal.pcbi.1006370
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006370
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006370&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.