IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006364.html
   My bibliography  Save this article

Comparative structural dynamic analysis of GTPases

Author

Listed:
  • Hongyang Li
  • Xin-Qiu Yao
  • Barry J Grant

Abstract

GTPases regulate a multitude of essential cellular processes ranging from movement and division to differentiation and neuronal activity. These ubiquitous enzymes operate by hydrolyzing GTP to GDP with associated conformational changes that modulate affinity for family-specific binding partners. There are three major GTPase superfamilies: Ras-like GTPases, heterotrimeric G proteins and protein-synthesizing GTPases. Although they contain similar nucleotide-binding sites, the detailed mechanisms by which these structurally and functionally diverse superfamilies operate remain unclear. Here we compare and contrast the structural dynamic mechanisms of each superfamily using extensive molecular dynamics (MD) simulations and subsequent network analysis approaches. In particular, dissection of the cross-correlations of atomic displacements in both the GTP and GDP-bound states of Ras, transducin and elongation factor EF-Tu reveals analogous dynamic features. This includes similar dynamic communities and subdomain structures (termed lobes). For all three proteins the GTP-bound state has stronger couplings between equivalent lobes. Network analysis further identifies common and family-specific residues mediating the state-specific coupling of distal functional sites. Mutational simulations demonstrate how disrupting these couplings leads to distal dynamic effects at the nucleotide-binding site of each family. Collectively our studies extend current understanding of GTPase allosteric mechanisms and highlight previously unappreciated similarities across functionally diverse families.Author summary: GTPases are a large superfamily of essential enzymes that regulate a variety of cellular processes. They share a common core structure supporting nucleotide binding and hydrolysis, and are potentially descended from the same ancestor. Yet their biological functions diverge dramatically, ranging from cell division and movement to signal transduction and translation. It has been shown that conformational changes through binding to different substrates underlie the regulation of their activities. Here we investigate the conformational dynamics of three typical GTPases by in silico simulation. We find that these three GTPases possess overall similar substrate-associated dynamic features, beyond their distinct functions. Further identification of key common and family-specific elements in these three families helps us understand how enzymes are adapted to acquire distinct functions from a common core structure. Our results provide unprecedented insights into the functional mechanism of GTPases in general, which potentially facilitates novel protein design in the future.

Suggested Citation

  • Hongyang Li & Xin-Qiu Yao & Barry J Grant, 2018. "Comparative structural dynamic analysis of GTPases," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-19, November.
  • Handle: RePEc:plo:pcbi00:1006364
    DOI: 10.1371/journal.pcbi.1006364
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006364
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006364&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barry J Grant & Alemayehu A Gorfe & J Andrew McCammon, 2009. "Ras Conformational Switching: Simulating Nucleotide-Dependent Conformational Transitions with Accelerated Molecular Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-10, March.
    2. Ka Young Chung & Søren G. F. Rasmussen & Tong Liu & Sheng Li & Brian T. DeVree & Pil Seok Chae & Diane Calinski & Brian K. Kobilka & Virgil L. Woods & Roger K. Sunahara, 2011. "Conformational changes in the G protein Gs induced by the β2 adrenergic receptor," Nature, Nature, vol. 477(7366), pages 611-615, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Augusto F de Oliveira & Barry J Grant & Michelle Zhou & J Andrew McCammon, 2011. "Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-7, October.
    2. Wenguang G. Liang & Juwina Wijaya & Hui Wei & Alex J. Noble & Jordan M. Mancl & Swansea Mo & David Lee & John V. Lin King & Man Pan & Chang Liu & Carla M. Koehler & Minglei Zhao & Clinton S. Potter & , 2022. "Structural basis for the mechanisms of human presequence protease conformational switch and substrate recognition," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Juan Manuel Ortiz-Sanchez & Sara E Nichols & Jacqueline Sayyah & Joan Heller Brown & J Andrew McCammon & Barry J Grant, 2012. "Identification of Potential Small Molecule Binding Pockets on Rho Family GTPases," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.
    4. Ammu Prasanna Kumar & Suryani Lukman, 2018. "Allosteric binding sites in Rab11 for potential drug candidates," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-46, June.
    5. Neeru Sharma & Uddhavesh Sonavane & Rajendra Joshi, 2020. "Comparative MD simulations and advanced analytics based studies on wild-type and hot-spot mutant A59G HRas," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-22, October.
    6. Suryani Lukman & Barry J Grant & Alemayehu A Gorfe & Guy H Grant & J Andrew McCammon, 2010. "The Distinct Conformational Dynamics of K-Ras and H-Ras A59G," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-9, September.
    7. Liang Fang & Chanjuan Zhou & Shunjie Bai & Chenglong Huang & Junxi Pan & Ling Wang & Xinfa Wang & Qiang Mao & Lu Sun & Peng Xie, 2015. "The C825T Polymorphism of the G-Protein β3 Gene as a Risk Factor for Depression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-11, July.
    8. Guido Scarabelli & Barry J Grant, 2013. "Mapping the Structural and Dynamical Features of Kinesin Motor Domains," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-13, November.
    9. Abhijeet Kapoor & Alex Travesset, 2014. "Mechanism of the Exchange Reaction in HRAS from Multiscale Modeling," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    10. Rudy Clausen & Buyong Ma & Ruth Nussinov & Amarda Shehu, 2015. "Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.