IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006296.html
   My bibliography  Save this article

A minimally invasive neurostimulation method for controlling abnormal synchronisation in the neuronal activity

Author

Listed:
  • Malbor Asllani
  • Paul Expert
  • Timoteo Carletti

Abstract

Many collective phenomena in Nature emerge from the -partial- synchronisation of the units comprising a system. In the case of the brain, this self-organised process allows groups of neurons to fire in highly intricate partially synchronised patterns and eventually lead to high level cognitive outputs and control over the human body. However, when the synchronisation patterns are altered and hypersynchronisation occurs, undesirable effects can occur. This is particularly striking and well documented in the case of epileptic seizures and tremors in neurodegenerative diseases such as Parkinson’s disease. In this paper, we propose an innovative, minimally invasive, control method that can effectively desynchronise misfiring brain regions and thus mitigate and even eliminate the symptoms of the diseases. The control strategy, grounded in the Hamiltonian control theory, is applied to ensembles of neurons modelled via the Kuramoto or the Stuart-Landau models and allows for heterogeneous coupling among the interacting unities. The theory has been complemented with dedicated numerical simulations performed using the small-world Newman-Watts network and the random Erdős-Rényi network. Finally the method has been compared with the gold-standard Proportional-Differential Feedback control technique. Our method is shown to achieve equivalent levels of desynchronisation using lesser control strength and/or fewer controllers, being thus minimally invasive.Author summary: Synchronisation plays an important role in most of the neuronal activities and in particular in the control of the motor system. However, due to biochemical dysfunction in the brain activity, an abnormal and excessive synchronisation may occur being responsible for severe symptoms of several neurological diseases. For the case of Parkinson’s disease, for instance, an insufficient dopamine production in the basal ganglia causes rigidity or continuous tremors. In the case of epilepsy instead, imbalance between excitation and inhibition causes strong unpredictable seizures. Several neurostimulation techniques have been developed with the aim to control and relieve the symptoms as alternatives to oral medication. In this line of research, we propose a new method which has the property of being as little invasive as possible, in the number of electrodes needed and the strength of the current applied, while still controlling the symptoms. It is based on the consideration that neuronal patches resemble a set of phase-coupled oscillators which dynamics can be described by the celebrated Kuramoto model. The control technique we employ is inspired by a Hamiltonian formulation of the Kuramoto model. To verify the effectiveness of our method, we test it in a more realistic model of coupled neuronal patches described by the Stuart-Landau equations. Numerical simulations validate our approach.

Suggested Citation

  • Malbor Asllani & Paul Expert & Timoteo Carletti, 2018. "A minimally invasive neurostimulation method for controlling abnormal synchronisation in the neuronal activity," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-18, July.
  • Handle: RePEc:plo:pcbi00:1006296
    DOI: 10.1371/journal.pcbi.1006296
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006296
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006296&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.