IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006267.html
   My bibliography  Save this article

Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: An Active Inference model

Author

Listed:
  • Anna C Sales
  • Karl J Friston
  • Matthew W Jones
  • Anthony E Pickering
  • Rosalyn J Moran

Abstract

The locus coeruleus (LC) in the pons is the major source of noradrenaline (NA) in the brain. Two modes of LC firing have been associated with distinct cognitive states: changes in tonic rates of firing are correlated with global levels of arousal and behavioural flexibility, whilst phasic LC responses are evoked by salient stimuli. Here, we unify these two modes of firing by modelling the response of the LC as a correlate of a prediction error when inferring states for action planning under Active Inference (AI). We simulate a classic Go/No-go reward learning task and a three-arm ‘explore/exploit’ task and show that, if LC activity is considered to reflect the magnitude of high level ‘state-action’ prediction errors, then both tonic and phasic modes of firing are emergent features of belief updating. We also demonstrate that when contingencies change, AI agents can update their internal models more quickly by feeding back this state-action prediction error–reflected in LC firing and noradrenaline release–to optimise learning rate, enabling large adjustments over short timescales. We propose that such prediction errors are mediated by cortico-LC connections, whilst ascending input from LC to cortex modulates belief updating in anterior cingulate cortex (ACC). In short, we characterise the LC/ NA system within a general theory of brain function. In doing so, we show that contrasting, behaviour-dependent firing patterns are an emergent property of the LC that translates state-action prediction errors into an optimal balance between plasticity and stability.Author summary: The brain uses sensory information to build internal models and make predictions about the world. When errors of prediction occur, models must be updated to ensure desired outcomes are still achieved. Neuromodulator chemicals provide a possible pathway for triggering such changes in brain state. One such neuromodulator, noradrenaline, originates predominantly from a cluster of neurons in the brainstem—the locus coeruleus (LC)—and plays a key role in behaviour, for instance, in determining the balance between exploiting or exploring the environment. Here we use Active Inference (AI), a mathematical model of perception and action, to formally describe LC function. We propose that LC activity is triggered by errors in prediction and that the subsequent release of noradrenaline alters the rate of learning about the environment. Biologically, this describes an LC-cortex feedback loop promoting behavioural flexibility in times of uncertainty. We model LC output as a simulated animal performs two tasks known to elicit archetypal responses. We find that experimentally observed ‘phasic’ and ‘tonic’ patterns of LC activity emerge naturally, and that modulation of learning rates improves task performance. This provides a simple, unified computational account of noradrenergic computational function within a general model of behaviour.

Suggested Citation

  • Anna C Sales & Karl J Friston & Matthew W Jones & Anthony E Pickering & Rosalyn J Moran, 2019. "Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: An Active Inference model," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-24, January.
  • Handle: RePEc:plo:pcbi00:1006267
    DOI: 10.1371/journal.pcbi.1006267
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006267
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006267&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.