IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006241.html
   My bibliography  Save this article

The effect of cell geometry on polarization in budding yeast

Author

Listed:
  • Michael Trogdon
  • Brian Drawert
  • Carlos Gomez
  • Samhita P Banavar
  • Tau-Mu Yi
  • Otger Campàs
  • Linda R Petzold

Abstract

The localization (or polarization) of proteins on the membrane during the mating of budding yeast (Saccharomyces cerevisiae) is an important model system for understanding simple pattern formation within cells. While there are many existing mathematical models of polarization, for both budding and mating, there are still many aspects of this process that are not well understood. In this paper we set out to elucidate the effect that the geometry of the cell can have on the dynamics of certain models of polarization. Specifically, we look at several spatial stochastic models of Cdc42 polarization that have been adapted from published models, on a variety of tip-shaped geometries, to replicate the shape change that occurs during the growth of the mating projection. We show here that there is a complex interplay between the dynamics of polarization and the shape of the cell. Our results show that while models of polarization can generate a stable polarization cap, its localization at the tip of mating projections is unstable, with the polarization cap drifting away from the tip of the projection in a geometry dependent manner. We also compare predictions from our computational results to experiments that observe cells with projections of varying lengths, and track the stability of the polarization cap. Lastly, we examine one model of actin polarization and show that it is unlikely, at least for the models studied here, that actin dynamics and vesicle traffic are able to overcome this effect of geometry.Author summary: The ability of cells to spontaneously break symmetry and form patterns via networks of protein reactions is a well-studied, yet not fully understood, phenomenon. One particularly useful model system is the mating of yeast cells, where a localization of proteins on the membrane leads to actin cable formation, vesicle traffic, changes in material properties of the cell wall and ultimately to the growth of a mating projection. There is no shortage of mathematical models describing the mechanisms of polarization, yet they are often formulated as differential equations on simple domains. The effect of geometry on the dynamics of polarization has not been systematically explored. There is an interaction between the length scales of polarization and the features of the geometry of the cell that has been under-appreciated and may lead to novel biological insights.

Suggested Citation

  • Michael Trogdon & Brian Drawert & Carlos Gomez & Samhita P Banavar & Tau-Mu Yi & Otger Campàs & Linda R Petzold, 2018. "The effect of cell geometry on polarization in budding yeast," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
  • Handle: RePEc:plo:pcbi00:1006241
    DOI: 10.1371/journal.pcbi.1006241
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006241
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006241&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.