IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006049.html
   My bibliography  Save this article

The importance of geometry in the corneal micropocket angiogenesis assay

Author

Listed:
  • James A Grogan
  • Anthony J Connor
  • Joe M Pitt-Francis
  • Philip K Maini
  • Helen M Byrne

Abstract

The corneal micropocket angiogenesis assay is an experimental protocol for studying vessel network formation, or neovascularization, in vivo. The assay is attractive due to the ease with which the developing vessel network can be observed in the same animal over time. Measurements from the assay have been used in combination with mathematical modeling to gain insights into the mechanisms of angiogenesis. While previous modeling studies have adopted planar domains to represent the assay, the hemispherical shape of the cornea and asymmetric positioning of the angiogenic source can be seen to affect vascular patterning in experimental images. As such, we aim to better understand: i) how the geometry of the assay influences vessel network formation and ii) how to relate observations from planar domains to those in the hemispherical cornea. To do so, we develop a three-dimensional, off-lattice mathematical model of neovascularization in the cornea, using a spatially resolved representation of the assay for the first time. Relative to the detailed model, we predict that the adoption of planar geometries has a noticeable impact on vascular patterning, leading to increased vessel ‘merging’, or anastomosis, in particular when circular geometries are adopted. Significant differences in the dynamics of diffusible aniogenesis simulators are also predicted between different domains. In terms of comparing predictions across domains, the ‘distance of the vascular front to the limbus’ metric is found to have low sensitivity to domain choice, while metrics such as densities of tip cells and vessels and ‘vascularized fraction’ are sensitive to domain choice. Given the widespread adoption and attractive simplicity of planar tissue domains, both in silico and in vitro, the differences identified in the present study should prove useful in relating the results of previous and future theoretical studies of neovascularization to in vivo observations in the cornea.Author summary: Neovascularization, or the formation of new blood vessels, is an important process in development, wound healing and cancer. The corneal micropocket assay is used to better understand the process and, in the case of cancer, how it can be controlled with drug therapies for improved patient outcomes. In the assay, the hemispherical shape of the cornea can influence the way the vessel network forms. This makes it difficult to directly compare results from experiments with the predictions of mathematical models or cell culture experiments, which are typically performed on flat substrates or planar matrices. In this study, we use mathematical modeling to investigate how the hemispherical shape of the cornea affects vessel formation and to identify how sensitive different measurements of neovascularization are to geometry.

Suggested Citation

  • James A Grogan & Anthony J Connor & Joe M Pitt-Francis & Philip K Maini & Helen M Byrne, 2018. "The importance of geometry in the corneal micropocket angiogenesis assay," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-20, March.
  • Handle: RePEc:plo:pcbi00:1006049
    DOI: 10.1371/journal.pcbi.1006049
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006049
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006049&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.