IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005974.html
   My bibliography  Save this article

Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations

Author

Listed:
  • Jagdish Suresh Patel
  • Celeste J Brown
  • F Marty Ytreberg
  • Deborah L Stenkamp

Abstract

Vision is the dominant sensory modality in many organisms for foraging, predator avoidance, and social behaviors including mate selection. Vertebrate visual perception is initiated when light strikes rod and cone photoreceptors within the neural retina of the eye. Sensitivity to individual colors, i.e., peak spectral sensitivities (λmax) of visual pigments, are a function of the type of chromophore and the amino acid sequence of the associated opsin protein in the photoreceptors. Large differences in peak spectral sensitivities can result from minor differences in amino acid sequence of cone opsins. To determine how minor sequence differences could result in large spectral shifts we selected a spectrally-diverse group of 14 teleost Rh2 cone opsins for which sequences and λmax are experimentally known. Classical molecular dynamics simulations were carried out after embedding chromophore-associated homology structures within explicit bilayers and water. These simulations revealed structural features of visual pigments, particularly within the chromophore, that contributed to diverged spectral sensitivities. Statistical tests performed on all the observed structural parameters associated with the chromophore revealed that a two-term, first-order regression model was sufficient to accurately predict λmax over a range of 452–528 nm. The approach was accurate, efficient and simple in that site-by-site molecular modifications or complex quantum mechanics models were not required to predict λmax. These studies identify structural features associated with the chromophore that may explain diverged spectral sensitivities, and provide a platform for future, functionally predictive opsin modeling.Author summary: Vertebrate color vision is possible when cone visual pigments with distinct peak spectral sensitivities (λmax) are expressed in separate cone populations and provide differential input to downstream neurons. The λmax is a function of the type of chromophore (such as 11-cis retinal) and the amino acid sequence of the associated opsin protein. In this study we utilize a molecular modeling approach to predict with high accuracy the λmax of cone visual pigments, using only the amino acid sequences of the corresponding opsin proteins as input. Such a functionally predictive, genome to phenome, opsin modeling has been elusive for decades, and now carries high potential for future applications in evolutionary biology, biophysics, bio-engineering, and vision science.

Suggested Citation

  • Jagdish Suresh Patel & Celeste J Brown & F Marty Ytreberg & Deborah L Stenkamp, 2018. "Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-15, January.
  • Handle: RePEc:plo:pcbi00:1005974
    DOI: 10.1371/journal.pcbi.1005974
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005974
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005974&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.