IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005800.html
   My bibliography  Save this article

Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics

Author

Listed:
  • Roman Shevchuk
  • Jochen S Hub

Abstract

Small-angle X-ray scattering is an increasingly popular technique used to detect protein structures and ensembles in solution. However, the refinement of structures and ensembles against SAXS data is often ambiguous due to the low information content of SAXS data, unknown systematic errors, and unknown scattering contributions from the solvent. We offer a solution to such problems by combining Bayesian inference with all-atom molecular dynamics simulations and explicit-solvent SAXS calculations. The Bayesian formulation correctly weights the SAXS data versus prior physical knowledge, it quantifies the precision or ambiguity of fitted structures and ensembles, and it accounts for unknown systematic errors due to poor buffer matching. The method further provides a probabilistic criterion for identifying the number of states required to explain the SAXS data. The method is validated by refining ensembles of a periplasmic binding protein against calculated SAXS curves. Subsequently, we derive the solution ensembles of the eukaryotic chaperone heat shock protein 90 (Hsp90) against experimental SAXS data. We find that the SAXS data of the apo state of Hsp90 is compatible with a single wide-open conformation, whereas the SAXS data of Hsp90 bound to ATP or to an ATP-analogue strongly suggest heterogenous ensembles of a closed and a wide-open state.Author summary: In solution, many proteins adopt ensembles of multiple distinct states. The relative concentrations of the states are tightly controlled by factors such as pH, phosphorylation, or ligand binding, and a misbalance between the states underlies diseases such as cancer or neurodegeneration. However, detecting protein ensembles in experimental data has remained challenging. We present a statistically founded procedure for refining protein structures and ensembles against X-ray solution scattering data by combining atomistic simulations with Bayesian inference.

Suggested Citation

  • Roman Shevchuk & Jochen S Hub, 2017. "Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-27, October.
  • Handle: RePEc:plo:pcbi00:1005800
    DOI: 10.1371/journal.pcbi.1005800
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005800
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005800&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.