IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005790.html
   My bibliography  Save this article

Image-based model of the spectrin cytoskeleton for red blood cell simulation

Author

Listed:
  • Thomas G Fai
  • Alejandra Leo-Macias
  • David L Stokes
  • Charles S Peskin

Abstract

We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.Author summary: Red blood cells are responsible for delivering oxygen to tissues throughout the body. These terminally differentiated cells have developed a fascinating flexibility and resiliency that is critical to navigating the circulatory system. Far from being rigid bodies, red blood cells adopt biconcave disk shapes at equilibrium, parachute-like shapes as they move between large vessels and small capillaries, and more extreme shapes as they traverse the endothelial slits of the spleen. Understanding the remarkable mechanical properties that allow red cells to experience such large deformations while maintaining structural integrity is a fundamental question in physiology that may help advance treatments of genetic disorders such as hereditary spherocytosis and elliptocytosis that affect red cell flexibility and can lead to severe anemia. In this work, we present a model of the red blood cell cytoskeleton based on cryoelectron tomography data. We develop an image processing technique to gather statistics from these data and use these statistics to generate a random entropic network to model the cytoskeleton. We then simulate the behavior of the resulting red blood cells in flow. As we demonstrate through simulations, this method makes it possible to examine the consequences of changes in microstructural properties such as the rate of cytoskeletal remodeling.

Suggested Citation

  • Thomas G Fai & Alejandra Leo-Macias & David L Stokes & Charles S Peskin, 2017. "Image-based model of the spectrin cytoskeleton for red blood cell simulation," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1005790
    DOI: 10.1371/journal.pcbi.1005790
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005790
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005790&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.