IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005748.html
   My bibliography  Save this article

Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations

Author

Listed:
  • Shintaroh Kubo
  • Wenfei Li
  • Shoji Takada

Abstract

Cytoplasmic dynein is a giant ATP-driven molecular motor that proceeds to the minus end of the microtubule (MT). Dynein hydrolyzes ATP in a ring-like structure, containing 6 AAA+ (ATPases associated with diverse cellular activities) modules, which is ~15 nm away from the MT binding domain (MTBD). This architecture implies that long-distance allosteric couplings exist between the AAA+ ring and the MTBD in order for dynein to move on the MT, although little is known about the mechanisms involved. Here, we have performed comprehensive molecular simulations of the dynein motor domain based on pre- and post- power-stroke structural information and in doing so we address the allosteric conformational changes that occur during the power-stroke and recovery-stroke processes. In the power-stroke process, the N-terminal linker movement was the prerequisite to the nucleotide-dependent AAA1 transition, from which a transition cascade propagated, on average, in a circular manner on the AAA+ ring until it reached the AAA6/C-terminal module. The recovery-stroke process was initiated by the transition of the AAA6/C-terminal, from which the transition cascade split into the two directions of the AAA+ ring, occurring both clockwise and anti-clockwise. In both processes, the MTBD conformational change was regulated by the AAA4 module and the AAA5/Strut module.Author summary: The linear molecular motor dynein is an intriguing allosteric model protein. ATP hydrolysis, catalyzed by modules in the AAA+ ring, regulates the binding to the rail molecule, microtubule, which is ~15 nm away from the AAA+ ring. The molecular mechanisms underpinning this long-distance communication are unclear. Based on recently solved pre- and post- power-stroke crystal structure information, we performed, for the first time to our knowledge, molecular simulations of complete conformational changes between the two structures. The simulation revealed that module-by-module allosteric conformational changes occur. Interestingly, the transition cascade from the pre- to the post-power-stroke states propagated in a circular manner around the AAA+ ring, while that of the recovery transitions propagated in a bi-directional manner around the ring.

Suggested Citation

  • Shintaroh Kubo & Wenfei Li & Shoji Takada, 2017. "Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-27, September.
  • Handle: RePEc:plo:pcbi00:1005748
    DOI: 10.1371/journal.pcbi.1005748
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005748
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005748&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.