IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005717.html
   My bibliography  Save this article

Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing

Author

Listed:
  • Mohamed Ali Ghadie
  • Luke Lambourne
  • Marc Vidal
  • Yu Xia

Abstract

Alternative splicing is known to remodel protein-protein interaction networks (“interactomes”), yet large-scale determination of isoform-specific interactions remains challenging. We present a domain-based method to predict the isoform interactome from the reference interactome. First, we construct the domain-resolved reference interactome by mapping known domain-domain interactions onto experimentally-determined interactions between reference proteins. Then, we construct the isoform interactome by predicting that an isoform loses an interaction if it loses the domain mediating the interaction. Our prediction framework is of high-quality when assessed by experimental data. The predicted human isoform interactome reveals extensive network remodeling by alternative splicing. Protein pairs interacting with different isoforms of the same gene tend to be more divergent in biological function, tissue expression, and disease phenotype than protein pairs interacting with the same isoforms. Our prediction method complements experimental efforts, and demonstrates that integrating structural domain information with interactomes provides insights into the functional impact of alternative splicing.Author summary: Protein-protein interaction networks have been extensively used in systems biology to study the role of proteins in cell function and disease. However, current network biology studies typically assume that one gene encodes one protein isoform, ignoring the effect of alternative splicing. Alternative splicing allows a gene to produce multiple protein isoforms, by alternatively selecting distinct regions in the gene to be translated to protein products. Here, we present a computational method to predict and analyze the large-scale effect of alternative splicing on protein-protein interaction networks. Starting with a reference protein-protein interaction network determined by experiments, our method annotates protein-protein interactions with domain-domain interactions, and predicts that a protein isoform loses an interaction if it loses the domain mediating the interaction as a result of alternative splicing. Our predictions reveal the central role of alternative splicing in extensively remodeling the human protein-protein interaction network, and in increasing the functional complexity of the human cell. Our prediction method complements ongoing experimental efforts by predicting isoform-specific interactions for genes not tested yet by experiments and providing insights into the functional impact of alternative splicing.

Suggested Citation

  • Mohamed Ali Ghadie & Luke Lambourne & Marc Vidal & Yu Xia, 2017. "Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-20, August.
  • Handle: RePEc:plo:pcbi00:1005717
    DOI: 10.1371/journal.pcbi.1005717
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005717
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005717&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.