IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005661.html
   My bibliography  Save this article

DeepPep: Deep proteome inference from peptide profiles

Author

Listed:
  • Minseung Kim
  • Ameen Eetemadi
  • Ilias Tagkopoulos

Abstract

Protein inference, the identification of the protein set that is the origin of a given peptide profile, is a fundamental challenge in proteomics. We present DeepPep, a deep-convolutional neural network framework that predicts the protein set from a proteomics mixture, given the sequence universe of possible proteins and a target peptide profile. In its core, DeepPep quantifies the change in probabilistic score of peptide-spectrum matches in the presence or absence of a specific protein, hence selecting as candidate proteins with the largest impact to the peptide profile. Application of the method across datasets argues for its competitive predictive ability (AUC of 0.80±0.18, AUPR of 0.84±0.28) in inferring proteins without need of peptide detectability on which the most competitive methods rely. We find that the convolutional neural network architecture outperforms the traditional artificial neural network architectures without convolution layers in protein inference. We expect that similar deep learning architectures that allow learning nonlinear patterns can be further extended to problems in metagenome profiling and cell type inference. The source code of DeepPep and the benchmark datasets used in this study are available at https://deeppep.github.io/DeepPep/.Author Summary: The accurate identification of proteins in a proteomics sample, called the protein inference problem, is a fundamental challenge in biomedical sciences. Current approaches are based on applications of traditional neural networks, linear optimization and Bayesian techniques. We here present DeepPep, a deep-convolutional neural network framework that predicts the protein set from a standard proteomics mixture, given all protein sequences and a peptide profile. Comparison to leading methods shows that DeepPep has most robust performance with various instruments and datasets. Our results provide evidence that using sequence-level location information of a peptide in the context of proteome sequence can result in more accurate and robust protein inference. We conclude that Deep Learning on protein sequence leads to superior platforms for protein inference that can be further refined with additional features and extended for far reaching applications.

Suggested Citation

  • Minseung Kim & Ameen Eetemadi & Ilias Tagkopoulos, 2017. "DeepPep: Deep proteome inference from peptide profiles," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-17, September.
  • Handle: RePEc:plo:pcbi00:1005661
    DOI: 10.1371/journal.pcbi.1005661
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005661
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005661&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.