IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005622.html
   My bibliography  Save this article

Measuring distance through dense weighted networks: The case of hospital-associated pathogens

Author

Listed:
  • Tjibbe Donker
  • Timo Smieszek
  • Katherine L Henderson
  • Alan P Johnson
  • A Sarah Walker
  • Julie V Robotham

Abstract

Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult.Author summary: Shared patients can spread hospital-associated pathogens between hospitals, together forming a large network in which all hospitals are connected. We set out to measure the distance between hospitals in such a network, best reflecting the risk of a hospital-associated pathogen spreading from one to the other. The central problem is that this risk may not be a directly reflected by the weight of the direct connections between hospitals, because the pathogen could arrive through a longer indirect route, first causing a problem in an intermediate hospital. We determined the optimal balance between connection weights and path length, by testing different weighting factors between them against simulated spread of a pathogen. We found that while strong connections are important risk factor for a hospital’s direct neighbours, weak connections offer ideal indirect routes for hospital-associated pathogens to travel further faster. These routes should not be underestimated when designing control strategies.

Suggested Citation

  • Tjibbe Donker & Timo Smieszek & Katherine L Henderson & Alan P Johnson & A Sarah Walker & Julie V Robotham, 2017. "Measuring distance through dense weighted networks: The case of hospital-associated pathogens," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
  • Handle: RePEc:plo:pcbi00:1005622
    DOI: 10.1371/journal.pcbi.1005622
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005622
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005622&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.