IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005536.html
   My bibliography  Save this article

A predictive coding account of bistable perception - a model-based fMRI study

Author

Listed:
  • Veith Weilnhammer
  • Heiner Stuke
  • Guido Hesselmann
  • Philipp Sterzer
  • Katharina Schmack

Abstract

In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model’s predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants’ perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together, our current work provides a theoretical framework that allows for the analysis of behavioural and neural data using a predictive coding perspective on bistable perception. In this, our approach posits a crucial role of prediction error signalling for the resolution of perceptual ambiguities.Author summary: In bistable vision, perception spontaneously alternates between two different interpretations of a constant ambiguous stimulus. Here, we show that such spontaneous perceptual transitions can be parsimoniously described by a Bayesian predictive coding model. Using simulated, behavioural and fMRI data, we provide evidence that prediction errors stemming from the suppressed stimulus interpretation mediate perceptual transitions and correlate with neural activity in inferior frontal gyrus and insula. Our findings empirically corroborate theorizations on the relevance of prediction errors for spontaneous perceptual transitions and substantially contribute to a longstanding debate on the role of frontal activity in bistable vision. Therefore, our current work fundamentally advances our mechanistic understanding of perceptual inference in the human brain.

Suggested Citation

  • Veith Weilnhammer & Heiner Stuke & Guido Hesselmann & Philipp Sterzer & Katharina Schmack, 2017. "A predictive coding account of bistable perception - a model-based fMRI study," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-21, May.
  • Handle: RePEc:plo:pcbi00:1005536
    DOI: 10.1371/journal.pcbi.1005536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005536
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.