IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005527.html
   My bibliography  Save this article

Short-term activity cycles impede information transmission in ant colonies

Author

Listed:
  • Thomas O Richardson
  • Jonas I Liechti
  • Nathalie Stroeymeyt
  • Sebastian Bonhoeffer
  • Laurent Keller

Abstract

Rhythmical activity patterns are ubiquitous in nature. We study an oscillatory biological system: collective activity cycles in ant colonies. Ant colonies have become model systems for research on biological networks because the interactions between the component parts are visible to the naked eye, and because the time-ordered contact network formed by these interactions serves as the substrate for the distribution of information and other resources throughout the colony. To understand how the collective activity cycles influence the contact network transport properties, we used an automated tracking system to record the movement of all the individuals within nine different ant colonies. From these trajectories we extracted over two million ant-to-ant interactions. Time-series analysis of the temporal fluctuations of the overall colony interaction and movement rates revealed that both the period and amplitude of the activity cycles exhibit a diurnal cycle, in which daytime cycles are faster and of greater amplitude than night cycles. Using epidemiology-derived models of transmission over networks, we compared the transmission properties of the observed periodic contact networks with those of synthetic aperiodic networks. These simulations revealed that contrary to some predictions, regularly-oscillating contact networks should impede information transmission. Further, we provide a mechanistic explanation for this effect, and present evidence in support of it.Author summary: Many complex biological systems, from cardiac tissues to entire animal populations, exhibit rhythmical oscillations. Here we studied a textbook example of a complex living system–colonies of Leptothorax ants, which exhibit short (15 minute) collective activity cycles. In ant colonies, information, food, and chemical signals are transported throughout the group via worker-to-worker physical contacts, and it has therefore been suggested that the activity cycles might serve to increase the rapidity of information transmission. To test this, we used an automatic ant tracking system to identify physical contacts between workers, from which we reconstructed the dynamical network of physical contacts. We used models of information transmission derived from the study of contagious diseases to simulate information transmission over the rhythmical contact networks, which we compared against a set of comparable networks that exhibited no rhythms. These comparisons showed that, contrary to the expectations, oscillatory activity cycles slowed down information transmission rather than speeding it up. We suggest that the colony activity cycles might serve to ensure that old or out-of-date information is quickly expunged, and potentially reduce interference between different information streams.

Suggested Citation

  • Thomas O Richardson & Jonas I Liechti & Nathalie Stroeymeyt & Sebastian Bonhoeffer & Laurent Keller, 2017. "Short-term activity cycles impede information transmission in ant colonies," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-17, May.
  • Handle: RePEc:plo:pcbi00:1005527
    DOI: 10.1371/journal.pcbi.1005527
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005527
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005527&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.