IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005463.html
   My bibliography  Save this article

Sequence dependency of canonical base pair opening in the DNA double helix

Author

Listed:
  • Viveca Lindahl
  • Alessandra Villa
  • Berk Hess

Abstract

The flipping-out of a DNA base from the double helical structure is a key step of many cellular processes, such as DNA replication, modification and repair. Base pair opening is the first step of base flipping and the exact mechanism is still not well understood. We investigate sequence effects on base pair opening using extensive classical molecular dynamics simulations targeting the opening of 11 different canonical base pairs in two DNA sequences. Two popular biomolecular force fields are applied. To enhance sampling and calculate free energies, we bias the simulation along a simple distance coordinate using a newly developed adaptive sampling algorithm. The simulation is guided back and forth along the coordinate, allowing for multiple opening pathways. We compare the calculated free energies with those from an NMR study and check assumptions of the model used for interpreting the NMR data. Our results further show that the neighboring sequence is an important factor for the opening free energy, but also indicates that other sequence effects may play a role. All base pairs are observed to have a propensity for opening toward the major groove. The preferred opening base is cytosine for GC base pairs, while for AT there is sequence dependent competition between the two bases. For AT opening, we identify two non-canonical base pair interactions contributing to a local minimum in the free energy profile. For both AT and CG we observe long-lived interactions with water and with sodium ions at specific sites on the open base pair.Author summary: The DNA double helix, a molecule that stores biological information, has become an iconic image of biomedical research. In order to use or repair the information it carries, the bases that are stacked in the helix need to be chemically exposed. This can happen either by separating the two strands in the helix or by flipping out individual bases. Here, we focus on the latter process. Usually proteins are involved in interactions with bases, but it is still unclear if bases are pulled out actively by proteins or if they act on spontaneously flipped bases. Although experiments can detect base pair opening, it is difficult to detect which base moves in which direction. Here, we present results from molecular dynamics simulations using a recently developed sampling method which improves the statistics in the simulations by enhancing the probability of the base pair opening event. We observe differences in probability, modes and mechanism of opening that depend not only on the types of the bases in the pair, but also strongly on their neighbors. This provides essential information for understanding how DNA functions.

Suggested Citation

  • Viveca Lindahl & Alessandra Villa & Berk Hess, 2017. "Sequence dependency of canonical base pair opening in the DNA double helix," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-22, April.
  • Handle: RePEc:plo:pcbi00:1005463
    DOI: 10.1371/journal.pcbi.1005463
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005463
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005463&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.