IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005386.html
   My bibliography  Save this article

Testing the limits of gradient sensing

Author

Listed:
  • Vinal Lakhani
  • Timothy C Elston

Abstract

The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.Author summary: In order to survive, many organisms must not only be able to detect the presence of a chemical compound, but also in which direction that compound increases or decreases in concentration. For example, bacteria cells prefer to move towards areas with high sugar concentrations. The process by which cells determine the direction of a chemical gradient is called “Gradient Sensing”. Of particular interest is the gradient sensing capability of yeast cells. These cells have been observed detecting the direction of extremely shallow gradients, which produce only a 2% difference in the number of molecules across the cell. Because the molecular-level noise is much larger than this signal, it is unclear what noise-reduction mechanism the cell employs to reduce the noise and detect the signal. We developed a 3D computational simulation platform to calculate and study the exact positions of molecules during this process. Our platform utilizes High Performance Computing clusters and GPGPUs. We find that, of the two prevailing models in the literature, neither time-averaging nor receptor endocytosis sufficiently reduces molecular noise for yeast cells to reliably detect chemical gradients before they initiate polarized growth. This finding implies yeast must possess a mechanism for reorienting the direction of growth after cell polarization has occurred. We also find the cell membrane and similarly, any other physical barrier nearby the cell can improve the cell’s likelihood of detecting the gradient. Our simulation methods and results will be applicable in other areas of research.

Suggested Citation

  • Vinal Lakhani & Timothy C Elston, 2017. "Testing the limits of gradient sensing," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-30, February.
  • Handle: RePEc:plo:pcbi00:1005386
    DOI: 10.1371/journal.pcbi.1005386
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005386
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005386&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.