IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005315.html
   My bibliography  Save this article

Novel Models of Visual Topographic Map Alignment in the Superior Colliculus

Author

Listed:
  • Ruben A Tikidji-Hamburyan
  • Tarek A El-Ghazawi
  • Jason W Triplett

Abstract

The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them.Author Summary: In order to process sensory stimuli, precise connections must be established between sensory neurons during development. In the visual system, many connections are organized topographically, such that neighboring neurons monitor adjacent regions of space. In the superior colliculus (SC), converging topographic inputs must be aligned with one another to facilitate integration and preserve the spatial order of the visual scene. In this paper, we propose two novel computational models to describe the alignment of visual inputs in the SC. We demonstrate that both models are able to replicate experimental data obtained from wild type and mutant animals. Interestingly, each model performed differently in response to hypothetical experiments, suggesting they could be differentiated empirically. Thus, we put forth testable models of visual map alignment in the SC and propose experiments to determine which may be used during development.

Suggested Citation

  • Ruben A Tikidji-Hamburyan & Tarek A El-Ghazawi & Jason W Triplett, 2016. "Novel Models of Visual Topographic Map Alignment in the Superior Colliculus," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-20, December.
  • Handle: RePEc:plo:pcbi00:1005315
    DOI: 10.1371/journal.pcbi.1005315
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005315
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005315&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.