IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005314.html
   My bibliography  Save this article

Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?

Author

Listed:
  • Christopher M Siwy
  • Christopher Lockhart
  • Dmitri K Klimov

Abstract

By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the differences in the conformational ensembles of Aβ10-40 and Aβ1-40 are small and the former can be used as proxy of the full-length peptide. Based on this argument, we concluded that CHARMM36 force field with standard TIP3P model produces the most accurate representation of Aβ10-40 conformational ensemble.Author Summary: Dependence of protein conformational ensembles on force field parameterizations limits the predictive power of molecular dynamics simulations. To address this problem, we evaluated five all-atom force fields for their consistency in reproducing the conformational ensemble of Alzheimer’s Aβ10-40 peptide. To generate conformational ensembles, we have used replica exchange molecular dynamics and computed Aβ10-40 secondary and tertiary structures. We found that, although all force fields predict Aβ10-40 unfolded structure, they strongly disagree on helix and β propensities and tertiary structure distributions. We have also calculated Aβ10-40 J-coupling and residual dipolar coupling constants and compared them with the experimental data for the full-length Aβ1-40 peptide. Unexpectedly, we determined that in silico Aβ10-40 and experimental Aβ1-40 constants are in better agreement than these quantities computed and measured previously for identical peptides, such as Aβ1-40 or Aβ1-42. We then concluded that the conformational ensembles of Aβ10-40 and Aβ1-40 are similar and on this basis argue that CHARMM36 force field with standard TIP3P water model provides the most accurate description of Aβ10-40. Although our objective was not to evaluate the biomolecular force fields in general, our study is expected to facilitate their proper selection for the simulations of Alzheimer’s peptides.

Suggested Citation

  • Christopher M Siwy & Christopher Lockhart & Dmitri K Klimov, 2017. "Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-26, January.
  • Handle: RePEc:plo:pcbi00:1005314
    DOI: 10.1371/journal.pcbi.1005314
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005314
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005314&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.