IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005189.html
   My bibliography  Save this article

Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

Author

Listed:
  • Arno Onken
  • Jian K Liu
  • P P Chamanthi R Karunasekara
  • Ioannis Delis
  • Tim Gollisch
  • Stefano Panzeri

Abstract

Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.Author Summary: The ever growing size of neural populations simultaneously recorded in electrophysiological experiments calls for urgent analytical progress in understanding how to compactly describe all sensory information present both in the spatial and temporal structure of single-trial neural population activity. Here we show the power of analytical methods, termed space-by-time tensor factorizations, which detect groups of simultaneously coactive neurons and the temporal profiles of their coactivation. By validation on simulated data and on retinal recordings, we show that the tensor decomposition performs competitively compared to other techniques both in terms of data robustness and ability to find informative patterns across diverse stimuli. We show that this method can determine the spatial and temporal resolution of neural population codes, and find which spatial or temporal components of neural responses carry information not available in other aspects of the population code. When applied to experimental data, the method demonstrates the importance of first-spike latencies in retinal population coding of visual images, particularly for decoding fine spatial details of natural images from population activity. This work shows that this methodology can improve our knowledge of population coding by allowing the discovery of informative spatial and temporal firing patterns in populations of simultaneously recorded neurons.

Suggested Citation

  • Arno Onken & Jian K Liu & P P Chamanthi R Karunasekara & Ioannis Delis & Tim Gollisch & Stefano Panzeri, 2016. "Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-46, November.
  • Handle: RePEc:plo:pcbi00:1005189
    DOI: 10.1371/journal.pcbi.1005189
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005189
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005189&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.