IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005164.html
   My bibliography  Save this article

Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1

Author

Listed:
  • Jeffrey S Seely
  • Matthew T Kaufman
  • Stephen I Ryu
  • Krishna V Shenoy
  • John P Cunningham
  • Mark M Churchland

Abstract

Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models.Author Summary: Neuroscientists commonly measure the time-varying activity of neurons in the brain. Early studies explored how such activity directly encodes sensory stimuli. Since then neural responses have also been found to encode abstract parameters such as expected reward. Yet not all aspects of neural activity directly encode identifiable parameters: patterns of activity sometimes reflect the evolution of underlying internal computations, and may be only obliquely related to specific parameters. For example, it remains debated whether cortical activity during movement relates to parameters such as reach velocity, to parameters such as muscle activity, or to underlying computations that culminate in the production of muscle activity. To address this question we exploited an unexpected fact. When activity directly encodes a parameter it tends to be mathematically simple in a very particular way. When activity reflects the evolution of a computation being performed by the network, it tends to be mathematically simple in a different way. We found that responses in a visual area were simple in the first way, consistent with encoding of parameters. We found that responses in a motor area were simple in the second way, consistent with participation in the underlying computations that culminate in movement.

Suggested Citation

  • Jeffrey S Seely & Matthew T Kaufman & Stephen I Ryu & Krishna V Shenoy & John P Cunningham & Mark M Churchland, 2016. "Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-34, November.
  • Handle: RePEc:plo:pcbi00:1005164
    DOI: 10.1371/journal.pcbi.1005164
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005164
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005164&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.