IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005140.html
   My bibliography  Save this article

Stoichiometric Representation of Gene–Protein–Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction

Author

Listed:
  • Daniel Machado
  • Markus J Herrgård
  • Isabel Rocha

Abstract

Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.Author Summary: Genome-scale models of metabolism enable the exploration of the phenotypic landscape of an organism. Unlike probabilistic approaches such as genome-wide association studies, these models describe the mechanistic link between genotype and phenotype, predicting the response to genetic and environmental perturbations. However, this connection is hampered by the complexity of gene-protein-reaction associations. In this work, we implement a model transformation method that untangles this complexity by allowing gene-wise phenotype predictions using genome-scale models. The transformed model explicitly accounts for the individual flux carried by the enzyme or subunit encoded by each gene. Previously published simulation methods are automatically leveraged by this transformation, enabling new features such as the formulation of objectives and constraints at the gene/protein level. We demonstrate the application of different kinds of analysis and simulation methods, showing in each case how the gene-wise formulation can result in higher prediction accuracy in comparison to experimental data and improve the biological insight that can be obtained from available models.

Suggested Citation

  • Daniel Machado & Markus J Herrgård & Isabel Rocha, 2016. "Stoichiometric Representation of Gene–Protein–Reaction Associations Leverages Constraint-Based Analysis from Reaction to Gene-Level Phenotype Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-24, October.
  • Handle: RePEc:plo:pcbi00:1005140
    DOI: 10.1371/journal.pcbi.1005140
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005140
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005140&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.