IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005105.html
   My bibliography  Save this article

A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD

Author

Listed:
  • William B Ashworth
  • Nathan A Davies
  • I David L Bogle

Abstract

In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the build-up of glucose intermediates was less severe in the periportal hepatocyte compartments. Secondly, the periportal zonation of the enzymes mediating β-oxidation and oxidative phosphorylation resulted in excess fats being metabolised more rapidly in the periportal hepatocyte compartments. Finally, the pericentral expression of de novo lipogenesis contributed to pericentral steatosis when additionally simulating the increase in sterol-regulatory element binding protein 1c (SREBP-1c) seen in NAFLD patients in vivo. The hepatic triglyceride concentration was predicted to be most sensitive to inter-individual variation in the activity of enzymes which, either directly or indirectly, determine the rate of free fatty acid (FFA) oxidation. The concentration was most strongly dependent on the rate constants for β-oxidation and oxidative phosphorylation. It also showed moderate sensitivity to the rate constants for processes which alter the allosteric inhibition of β-oxidation by acetyl-CoA. The predominant sinusoidal location of steatosis meanwhile was most sensitive variations in the zonation of proteins mediating FFA uptake or triglyceride release as very low density lipoproteins (VLDL). Neither the total hepatic concentration nor the location of steatosis showed strong sensitivity to variations in the lipogenic rate constants.Author Summary: Fat build up in liver is known to increase the likelihood of developing numerous health problems around the body including cardiovascular problems, desensitisation to the hormone insulin leading to type 2 diabetes, and the development of fibrous tissue in liver (fibrosis) resulting in loss of liver function (cirrhosis). Liver cells show marked differences in their metabolism depending upon their position along liver capillaries (sinusoids). It has been shown previously that cells nearer the output end of the sinusoid (pericentral) are more susceptible to excess fat and the resulting damage than those near the input end. However, due to the micro-meter scale of the sinusoids and the large number of potential variables, it is difficult to study metabolism in individual regions of the sinusoid experimentally when considering various feeding and disease states. Here, a computational model of sinusoidal metabolism incorporating previously measured differences in enzyme activities across the sinusoid is presented and used to assess the key metabolic differences leading to pericentral susceptibility to excess fat build-up. Secondly, the model is used to assess the metabolic variations between individuals most likely to account for inter-individual variability in susceptibility to excess liver fat and its predominant location. These simulations will aid understanding of disease progression and allow for more targeted future experimental work.

Suggested Citation

  • William B Ashworth & Nathan A Davies & I David L Bogle, 2016. "A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-30, September.
  • Handle: RePEc:plo:pcbi00:1005105
    DOI: 10.1371/journal.pcbi.1005105
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005105
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005105&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaus Berndt & Marius Stefan Horger & Sascha Bulik & Hermann-Georg Holzhütter, 2018. "A multiscale modelling approach to assess the impact of metabolic zonation and microperfusion on the hepatic carbohydrate metabolism," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.