IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005087.html
   My bibliography  Save this article

A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup

Author

Listed:
  • Richard A Gray
  • Pras Pathmanathan

Abstract

Elucidating the underlying mechanisms of fatal cardiac arrhythmias requires a tight integration of electrophysiological experiments, models, and theory. Existing models of transmembrane action potential (AP) are complex (resulting in over parameterization) and varied (leading to dissimilar predictions). Thus, simpler models are needed to elucidate the “minimal physiological requirements” to reproduce significant observable phenomena using as few parameters as possible. Moreover, models have been derived from experimental studies from a variety of species under a range of environmental conditions (for example, all existing rabbit AP models incorporate a formulation of the rapid sodium current, INa, based on 30 year old data from chick embryo cell aggregates). Here we develop a simple “parsimonious” rabbit AP model that is mathematically identifiable (i.e., not over parameterized) by combining a novel Hodgkin-Huxley formulation of INa with a phenomenological model of repolarization similar to the voltage dependent, time-independent rectifying outward potassium current (IK). The model was calibrated using the following experimental data sets measured from the same species (rabbit) under physiological conditions: dynamic current-voltage (I-V) relationships during the AP upstroke; rapid recovery of AP excitability during the relative refractory period; and steady-state INa inactivation via voltage clamp. Simulations reproduced several important “emergent” phenomena including cellular alternans at rates > 250 bpm as observed in rabbit myocytes, reentrant spiral waves as observed on the surface of the rabbit heart, and spiral wave breakup. Model variants were studied which elucidated the minimal requirements for alternans and spiral wave break up, namely the kinetics of INa inactivation and the non-linear rectification of IK.The simplicity of the model, and the fact that its parameters have physiological meaning, make it ideal for engendering generalizable mechanistic insight and should provide a solid “building-block” to generate more detailed ionic models to represent complex rabbit electrophysiology.Author Summary: Understanding and preventing life-threatening irregular electrical heart rhythms includes basic experimental, numerical, and theoretical research. Computer models of the electrical dynamics of cardiac cells and impulse propagation throughout the heart are essential tools of this research. For example, simulations of electrical activity such as rotating ‘spiral waves’ have been used to understand how irregular heart rhythms are maintained. However, existing models are derived exclusively from sub-cellular data under a variety of environmental conditions and species. These models tend to be exceedingly complex including hundreds of variables and parameters which make them difficult to validate and analyze. Using experimental data from one species (rabbit) under nearly identical physiological conditions, we developed a simple model of the electrical activity of a cardiac cell derived from sub-cellular, cellular, and tissue experimental data. This model reproduces cellular excitability and its recovery as well as several important “emergent” phenomena including beat-to-beat cellular alterations and unstable spiral waves. Under some conditions, unstable spiral waves in this model give rise to continuous formation of new spiral waves (i.e., “spiral wave breakup”) which is thought to be the underlying cause of cardiac fibrillation and sudden cardiac death.

Suggested Citation

  • Richard A Gray & Pras Pathmanathan, 2016. "A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-21, October.
  • Handle: RePEc:plo:pcbi00:1005087
    DOI: 10.1371/journal.pcbi.1005087
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005087
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005087&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.