IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005047.html
   My bibliography  Save this article

Predicted Molecular Effects of Sequence Variants Link to System Level of Disease

Author

Listed:
  • Jonas Reeb
  • Maximilian Hecht
  • Yannick Mahlich
  • Yana Bromberg
  • Burkhard Rost

Abstract

Developments in experimental and computational biology are advancing our understanding of how protein sequence variation impacts molecular protein function. However, the leap from the micro level of molecular function to the macro level of the whole organism, e.g. disease, remains barred. Here, we present new results emphasizing earlier work that suggested some links from molecular function to disease. We focused on non-synonymous single nucleotide variants, also referred to as single amino acid variants (SAVs). Building upon OMIA (Online Mendelian Inheritance in Animals), we introduced a curated set of 117 disease-causing SAVs in animals. Methods optimized to capture effects upon molecular function often correctly predict human (OMIM) and animal (OMIA) Mendelian disease-causing variants. We also predicted effects of human disease-causing variants in the mouse model, i.e. we put OMIM SAVs into mouse orthologs. Overall, fewer variants were predicted with effect in the model organism than in the original organism. Our results, along with other recent studies, demonstrate that predictions of molecular effects capture some important aspects of disease. Thus, in silico methods focusing on the micro level of molecular function can help to understand the macro system level of disease.Author Summary: The variations in the genetic sequence between individuals affect the gene-product, i.e. the protein differently. Some variants have no measurable effect (are neutral), while others affect protein function. Some of those effects are so severe they cause so called monogenic Mendelian diseases, i.e. diseases triggered by a single letter change. Some in silico methods predict the molecular impact of sequence variation. However, both experimental and computational analyses struggle to generalize from the effect upon molecular protein function to the effect upon the organism such as a disease. Here, we confirmed that methods predicting molecular effects correctly capture the type of effects causing Mendelian diseases in human and introduced a data set for animal diseases that was also captured by predictions methods. Predicted effects were less when in silico testing human variants in an animal model (here mouse). This is important to know because “mouse models” are common to study human diseases. Overall, we provided some evidence for a link between the molecular level and some type of disease.

Suggested Citation

  • Jonas Reeb & Maximilian Hecht & Yannick Mahlich & Yana Bromberg & Burkhard Rost, 2016. "Predicted Molecular Effects of Sequence Variants Link to System Level of Disease," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-14, August.
  • Handle: RePEc:plo:pcbi00:1005047
    DOI: 10.1371/journal.pcbi.1005047
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005047
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005047&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.