IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005031.html
   My bibliography  Save this article

Functional Connectivity’s Degenerate View of Brain Computation

Author

Listed:
  • Guillaume Marrelec
  • Arnaud Messé
  • Alain Giron
  • David Rudrauf

Abstract

Brain computation relies on effective interactions between ensembles of neurons. In neuroimaging, measures of functional connectivity (FC) aim at statistically quantifying such interactions, often to study normal or pathological cognition. Their capacity to reflect a meaningful variety of patterns as expected from neural computation in relation to cognitive processes remains debated. The relative weights of time-varying local neurophysiological dynamics versus static structural connectivity (SC) in the generation of FC as measured remains unsettled. Empirical evidence features mixed results: from little to significant FC variability and correlation with cognitive functions, within and between participants. We used a unified approach combining multivariate analysis, bootstrap and computational modeling to characterize the potential variety of patterns of FC and SC both qualitatively and quantitatively. Empirical data and simulations from generative models with different dynamical behaviors demonstrated, largely irrespective of FC metrics, that a linear subspace with dimension one or two could explain much of the variability across patterns of FC. On the contrary, the variability across BOLD time-courses could not be reduced to such a small subspace. FC appeared to strongly reflect SC and to be partly governed by a Gaussian process. The main differences between simulated and empirical data related to limitations of DWI-based SC estimation (and SC itself could then be estimated from FC). Above and beyond the limited dynamical range of the BOLD signal itself, measures of FC may offer a degenerate representation of brain interactions, with limited access to the underlying complexity. They feature an invariant common core, reflecting the channel capacity of the network as conditioned by SC, with a limited, though perhaps meaningful residual variability.Author Summary: The human brain is characterized by both the way its neurons are connected (the anatomy) and the way they emit signals to interact (the dynamics). At the typical scale of measurements, by analogy with the road network, anatomy (the ‘roads’) is expected to remain relatively stable over time and reproducible from person to person, while neuronal dynamics propagating in the network (the ‘traffic’) can be expected to vary widely, both over time and between people. But, paradoxically, patterns of functional connectivity (FC), a convenient proxy to quantify interactions between pairs of brain regions in magnetic resonance imaging (MRI), have been found to be reproducible both within and between subjects across several studies, while other studies, on the contrary, have featured variable FC patterns, often in relation to cognitive processes. We investigate this unsettled issue quantitatively using multivariate statistics and generative models of brain activity. We show, across a range of estimators, that FC offers a degenerate representation of brain interactions and strongly depends on anatomy.

Suggested Citation

  • Guillaume Marrelec & Arnaud Messé & Alain Giron & David Rudrauf, 2016. "Functional Connectivity’s Degenerate View of Brain Computation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-25, October.
  • Handle: RePEc:plo:pcbi00:1005031
    DOI: 10.1371/journal.pcbi.1005031
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005031
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005031&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.