IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005004.html
   My bibliography  Save this article

Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection

Author

Listed:
  • Rafal Bogacz
  • Eduardo Martin Moraud
  • Azzedine Abdi
  • Peter J Magill
  • Jérôme Baufreton

Abstract

The external globus pallidus (GPe) is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN) neurons computes the normalization term in Bayes’ equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called ‘prototypic’ and ‘arkypallidal’ neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves) of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions.Author Summary: Choosing an appropriate action as quickly and accurately as possible in a given situation is critical for the survival of animals and humans. One of the brain regions involved in action selection is a set of subcortical nuclei known as the basal ganglia. The importance of understanding information processing in the basal ganglia is further emphasised by the fact that their disturbed interactions in Parkinson’s disease results in profound difficulties in movement. Computational models have suggested how the basal ganglia could select actions in the fastest possible way for the required accuracy level. These models further predict that a part of basal ganglia, called the external globus pallidus (GPe), needs to calculate a particular function of its inputs. This paper proposes how this function could be computed in a mathematical model of a network within GPe. Furthermore, it shows that the experimentally observed connectivity and response properties of GPe neurons fulfil the requirements necessary to support optimal action selection. This suggests the GPe neurons have properties that allow them to contribute to optimal action selection in the whole basal ganglia.

Suggested Citation

  • Rafal Bogacz & Eduardo Martin Moraud & Azzedine Abdi & Peter J Magill & Jérôme Baufreton, 2016. "Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
  • Handle: RePEc:plo:pcbi00:1005004
    DOI: 10.1371/journal.pcbi.1005004
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005004
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005004&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.