IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004735.html
   My bibliography  Save this article

Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons

Author

Listed:
  • Andrew Chay
  • Ilaria Zamparo
  • Andreas Koschinski
  • Manuela Zaccolo
  • Kim T Blackwell

Abstract

Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.Author Summary: Noradrenaline is a stress related molecule that facilitates learning and memory when released in the hippocampus. The facilitation of memory is related to modulation of synaptic plasticity, but the mechanisms underlying this modulation are not well understood. We utilize a combination of live cell imaging and computational modeling to discover how noradrenergic receptor stimulation interacts with other molecules, such as calcium, required for synaptic plasticity and memory storage. Though prior work has shown that noradrenergic receptors and calcium interact synergistically to elevate intracellular second messengers when combined simultaneously, our results demonstrate that prior stimulation of noradrenergic receptors inhibits the elevation of intracellular second messengers. Our results further demonstrate that the inhibition may be caused by the noradrenergic receptor switching signaling pathways, thereby recruiting a different set of memory kinases. This switching represents a novel mechanism for recruiting molecules involved in synaptic plasticity and memory.

Suggested Citation

  • Andrew Chay & Ilaria Zamparo & Andreas Koschinski & Manuela Zaccolo & Kim T Blackwell, 2016. "Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-32, February.
  • Handle: RePEc:plo:pcbi00:1004735
    DOI: 10.1371/journal.pcbi.1004735
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004735
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004735&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.