IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004692.html
   My bibliography  Save this article

Ensemble Tractography

Author

Listed:
  • Hiromasa Takemura
  • Cesar F Caiafa
  • Brian A Wandell
  • Franco Pestilli

Abstract

Tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with specific parameters poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate streamlines from an ensemble of algorithms (deterministic and probabilistic) and systematically varying parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validated prediction error of the diffusion MRI data than optimized connectomes generated using a single-algorithm or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Author Summary: Diffusion MRI and tractography opened a new avenue for studying white matter fascicles and their tissue properties in the living human brain. There are many different tractography methods, and each requires the user to set several parameters. A limitation of tractography is that the results depend on the selection of algorithms and parameters. Here, we analyze an ensemble method, Ensemble Tractography (ET), that reduces the effect of algorithm and parameter selection. ET creates a large set of candidate streamlines using an ensemble of algorithms and parameter values and then selects the streamlines with strong support from the data using a global fascicle evaluation method. Compared to single parameter connectomes, ET connectomes predict diffusion MRI signals better and cover a wider range of white matter volume. Importantly, ET connectomes include both short- and long-association fascicles, which are not typically found together in single-parameter connectomes.

Suggested Citation

  • Hiromasa Takemura & Cesar F Caiafa & Brian A Wandell & Franco Pestilli, 2016. "Ensemble Tractography," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-22, February.
  • Handle: RePEc:plo:pcbi00:1004692
    DOI: 10.1371/journal.pcbi.1004692
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004692
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004692&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.