IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004581.html
   My bibliography  Save this article

Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition

Author

Listed:
  • Jonathan Cannon
  • Nancy Kopell
  • Timothy Gardner
  • Jeffrey Markowitz

Abstract

Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.Author Summary: Sequences of stereotyped actions are central to the everyday lives of humans and animals. It was hypothesized over half a century ago that these behaviors were enabled by linking together groups of neurons (or “cell assemblies”) into a feedforward chain using correlation-based learning rules. These chains could then be activated to generate particular behavioral sequences. However, recent data from HVC (the songbird analogue of premotor cortex) paint a more complicated picture: inhibitory and excitatory cells lock to different phases of a rhythm, with inhibitory cells providing windows of opportunity for the excitatory cells to fire. This study puts forward a mathematical model that uses both a feedforward chain geometry and local feedback inhibition to generate stereotyped neural sequences. The chain conducts an excitatory pulse through multiple spatial regions, arriving at each as local inhibition dips. Our simulations and analysis demonstrate that such patterned local inhibition can synchronize the firing of pools of neurons and stabilize spike timing along the chain. Our model provides a new way of thinking about sequence generation in the songbird and in neural circuits more generally.

Suggested Citation

  • Jonathan Cannon & Nancy Kopell & Timothy Gardner & Jeffrey Markowitz, 2015. "Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-22, November.
  • Handle: RePEc:plo:pcbi00:1004581
    DOI: 10.1371/journal.pcbi.1004581
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004581
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004581&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.