IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004390.html
   My bibliography  Save this article

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex

Author

Listed:
  • Joel Z Leibo
  • Qianli Liao
  • Fabio Anselmi
  • Tomaso Poggio

Abstract

Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions.Author Summary: Domain-specific regions, like the fusiform face area, are a prominent feature of ventral visual cortex organization. Despite decades of interest from a large number of investigators employing diverse methods, there has been surprisingly little theoretical work on “why” the ventral stream may adopt this modular organization. In this study we propose a computational account of the role played by domain-specific regions in ventral stream function. It follows from a new theoretical analysis of the recognition problem which highlights the importance of building representations that are robust to class-specific transformations. These results provide a unifying account linking neuroimaging and neuropsychology-based ideas of domain-specific regions to the psychophysics and electrophysiology-oriented literature on view-based object recognition and invariance.

Suggested Citation

  • Joel Z Leibo & Qianli Liao & Fabio Anselmi & Tomaso Poggio, 2015. "The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-29, October.
  • Handle: RePEc:plo:pcbi00:1004390
    DOI: 10.1371/journal.pcbi.1004390
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004390
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004390&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Russell Epstein & Nancy Kanwisher, 1998. "A cortical representation of the local visual environment," Nature, Nature, vol. 392(6676), pages 598-601, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marisa Nordt & Jesse Gomez & Vaidehi S. Natu & Alex A. Rezai & Dawn Finzi & Holly Kular & Kalanit Grill-Spector, 2023. "Longitudinal development of category representations in ventral temporal cortex predicts word and face recognition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Ying Wang & Xue Zhang & Chunhui Wang & Weifen Huang & Qian Xu & Dong Liu & Wen Zhou & Shanguang Chen & Yi Jiang, 2022. "Modulation of biological motion perception in humans by gravity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.
    5. Guohua Shen & Tomoyasu Horikawa & Kei Majima & Yukiyasu Kamitani, 2019. "Deep image reconstruction from human brain activity," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    6. Batrancea Larissa, 2021. "Research Insights From Cognitive Neuroscience For Everyday Economists," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 35-41, April.
    7. Zhou, Lixing & Takane, Yoshio & Hwang, Heungsun, 2016. "Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 93-109.
    8. Mengna Yao & Bincheng Wen & Mingpo Yang & Jiebin Guo & Haozhou Jiang & Chao Feng & Yilei Cao & Huiguang He & Le Chang, 2023. "High-dimensional topographic organization of visual features in the primate temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    9. Michael F Bonner & Russell A Epstein, 2018. "Computational mechanisms underlying cortical responses to the affordance properties of visual scenes," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-31, April.
    10. Krisztina Nagy & Mark W Greenlee & Gyula Kovács, 2011. "Sensory Competition in the Face Processing Areas of the Human Brain," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-12, September.
    11. Kai J Miller & Gerwin Schalk & Dora Hermes & Jeffrey G Ojemann & Rajesh P N Rao, 2016. "Spontaneous Decoding of the Timing and Content of Human Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related Potential and Broadband Spectral Chang," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
    12. Ping‐Shou Zhong & Jun Li & Piotr Kokoszka, 2021. "Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 375-405, June.
    13. Haider Al-Tahan & Yalda Mohsenzadeh, 2021. "Reconstructing feedback representations in the ventral visual pathway with a generative adversarial autoencoder," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    14. István Czigler & Helene Intraub & Gábor Stefanics, 2013. "Prediction Beyond the Borders: ERP Indices of Boundary Extension-Related Error," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    15. Stephen Ramanoël & Louise Kauffmann & Emilie Cousin & Michel Dojat & Carole Peyrin, 2015. "Age-Related Differences in Spatial Frequency Processing during Scene Categorization," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-24, August.
    16. Johannes Haushofer & Margaret S Livingstone & Nancy Kanwisher, 2008. "Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.