IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004289.html
   My bibliography  Save this article

PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

Author

Listed:
  • Radhakrishna Bettadapura
  • Muhibur Rasheed
  • Antje Vollrath
  • Chandrajit Bajaj

Abstract

There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways:Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring.Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.Author Summary: In recent years, advances in cryo-electron microscopy (cryoEM) and three-dimensional (3D) image reconstruction have made it possible to determine the structures of molecular complexes, to sub-nanometer resolutions. These reconstructed 3D cryoEM maps provide a unique challenge, since the resolutions are often sufficient to resolve a subset of the secondary structural features (e.g., long α-helices), but not high enough to unambiguously identify others (e.g., short α-helices, β-sheets, α-helix pitch, or overall connectivity of proteins). Various types of hierarchical structure refinement models of the data, including the atomistic model match and fitting, which is the subject of this paper are crucial in helping derive a more complete understanding of the structure and function relationships of biological complexes. Our protocol offers several advantages over existing fitting techniques. We introduce three new scoring terms to evaluate the quality of fitting, and the optimization of these functions lead to better predictions than existing tools like ADP-EM and Colores. Furthermore, we have adopted a non-uniform FFT-based search which is not only faster than regular FFT, but it also enables one to selectively perform more refined searches in localized regions, which is specially useful when fitting a small molecular component into a larger symmetric or asymmetric macromolecular structure.

Suggested Citation

  • Radhakrishna Bettadapura & Muhibur Rasheed & Antje Vollrath & Chandrajit Bajaj, 2015. "PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-27, October.
  • Handle: RePEc:plo:pcbi00:1004289
    DOI: 10.1371/journal.pcbi.1004289
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004289
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004289&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.