IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003762.html
   My bibliography  Save this article

Collective Learning and Optimal Consensus Decisions in Social Animal Groups

Author

Listed:
  • Albert B Kao
  • Noam Miller
  • Colin Torney
  • Andrew Hartnett
  • Iain D Couzin

Abstract

Learning has been studied extensively in the context of isolated individuals. However, many organisms are social and consequently make decisions both individually and as part of a collective. Reaching consensus necessarily means that a single option is chosen by the group, even when there are dissenting opinions. This decision-making process decouples the otherwise direct relationship between animals' preferences and their experiences (the outcomes of decisions). Instead, because an individual's learned preferences influence what others experience, and therefore learn about, collective decisions couple the learning processes between social organisms. This introduces a new, and previously unexplored, dynamical relationship between preference, action, experience and learning. Here we model collective learning within animal groups that make consensus decisions. We reveal how learning as part of a collective results in behavior that is fundamentally different from that learned in isolation, allowing grouping organisms to spontaneously (and indirectly) detect correlations between group members' observations of environmental cues, adjust strategy as a function of changing group size (even if that group size is not known to the individual), and achieve a decision accuracy that is very close to that which is provably optimal, regardless of environmental contingencies. Because these properties make minimal cognitive demands on individuals, collective learning, and the capabilities it affords, may be widespread among group-living organisms. Our work emphasizes the importance and need for theoretical and experimental work that considers the mechanism and consequences of learning in a social context.Author Summary: Learning is ubiquitous among animal species, allowing individuals to adjust their behavior in response to their environment to improve their chances of survival and reproduction. However, while many animals live and make decisions within social groups, it is not well understood how associative learning functions within a social context. We describe an empirically derived model of collective learning and compare the learned performance of animals within groups to the optimal behavior for a wide range of environmental conditions and group sizes. We find that the learning rules derived from experiments with individual animals readily generalize to a social context, and these relatively simple rules result in behavior that is close to optimal, even when individuals know neither the size of their group nor the properties of environmental cues. Individuals that learn in isolation and subsequently join together as a group make substantially worse decisions. These results demonstrate the importance of learning within a collective context and highlight the need for experimental work to investigate the role of collective learning in enhancing decision accuracy in animal groups.

Suggested Citation

  • Albert B Kao & Noam Miller & Colin Torney & Andrew Hartnett & Iain D Couzin, 2014. "Collective Learning and Optimal Consensus Decisions in Social Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
  • Handle: RePEc:plo:pcbi00:1003762
    DOI: 10.1371/journal.pcbi.1003762
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003762
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003762&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.