IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003701.html
   My bibliography  Save this article

Computational Modeling and Analysis of Iron Release from Macrophages

Author

Listed:
  • Alka A Potdar
  • Joydeep Sarkar
  • Nupur K Das
  • Paroma Ghosh
  • Miklos Gratzl
  • Paul L Fox
  • Gerald M Saidel

Abstract

A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.Author Summary: Iron metabolism is an important physiological phenomenon essential for sustaining life. There is a tight regulation of iron levels in humans and both deficiency and overload can lead to disorders such as anemia and hemochromatosis. Recycling of iron in human body via macrophage iron release is crucial to maintain healthy iron levels. However, a computational model is needed to quantitatively analyze the mechanism underlying a key process in iron homeostasis, which is the release of iron from the macrophages. Using mechanistic, mathematical models to simulate experimental data, we found a novel mechanism by which macrophages release iron. A comparison of experimental data with model simulations shows that a currently accepted passive-gradient mechanism cannot represent the iron-release process from macrophages. However, our model with a facilitated-transport mechanism associated with ferroportin (only known protein for iron export) accurately reproduces the iron release process. This model quantifies for the first time the detailed molecular mechanism associated with iron transport via ferroportin. This quantitative predictive model of cellular iron efflux is essential for physiologically relevant simulation of whole-body model of iron metabolism in healthy and disease states.

Suggested Citation

  • Alka A Potdar & Joydeep Sarkar & Nupur K Das & Paroma Ghosh & Miklos Gratzl & Paul L Fox & Gerald M Saidel, 2014. "Computational Modeling and Analysis of Iron Release from Macrophages," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:plo:pcbi00:1003701
    DOI: 10.1371/journal.pcbi.1003701
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003701
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003701&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.