IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003656.html
   My bibliography  Save this article

Variability of Metabolite Levels Is Linked to Differential Metabolic Pathways in Arabidopsis's Responses to Abiotic Stresses

Author

Listed:
  • Nadine Töpfer
  • Federico Scossa
  • Alisdair Fernie
  • Zoran Nikoloski

Abstract

Constraint-based approaches have been used for integrating data in large-scale metabolic networks to obtain insights into metabolism of various organisms. Due to the underlying steady-state assumption, these approaches are usually not suited for making predictions about metabolite levels. Here, we ask whether we can make inferences about the variability of metabolite levels from a constraint-based analysis based on the integration of transcriptomics data. To this end, we analyze time-resolved transcriptomics and metabolomics data from Arabidopsis thaliana under a set of eight different light and temperature conditions. In a previous study, the gene expression data have already been integrated in a genome-scale metabolic network to predict pathways, termed modulators and sustainers, which are differentially regulated with respect to a biochemically meaningful data-driven null model. Here, we present a follow-up analysis which bridges the gap between flux- and metabolite-centric methods. One of our main findings demonstrates that under certain environmental conditions, the levels of metabolites acting as substrates in modulators or sustainers show significantly lower temporal variations with respect to the remaining measured metabolites. This observation is discussed within the context of a systems-view of plasticity and robustness of metabolite contents and pathway fluxes. Our study paves the way for investigating the existence of similar principles in other species for which both genome-scale networks and high-throughput metabolomics data of high quality are becoming increasingly available.Author Summary: Organisms are usually exposed to changing environments and balance these perturbations by altering their metabolic state. Gaining a deeper understanding of metabolic adjustment to varying external conditions is important for the development of advanced engineering strategies for microorganisms as well as for higher plants. One tool which is particularly suited for investigating these processes is genome-scale metabolic models. These large-scale representations of the underlying metabolic networks enable the integration of experimental data and application of constrain-based mathematical approaches to estimate flux rates through the chemical reactions of the network under different environmental scenarios. However, for most of these approaches the assumption of a steady-state (flux balance) is indispensable and therefore precludes the prediction of metabolite concentrations. Here, we present a data-driven observation that relates results from a flux-centric constraint-based approach that is based on transcriptomics data to metabolite levels from the same experiments. Our observations suggest that constraint-based modeling approaches in combination with high-throughput data can be used to infer regulatory principles about the plasticity and robustness of metabolic behavior from the stoichiometry of the underlying reactions alone.

Suggested Citation

  • Nadine Töpfer & Federico Scossa & Alisdair Fernie & Zoran Nikoloski, 2014. "Variability of Metabolite Levels Is Linked to Differential Metabolic Pathways in Arabidopsis's Responses to Abiotic Stresses," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-11, June.
  • Handle: RePEc:plo:pcbi00:1003656
    DOI: 10.1371/journal.pcbi.1003656
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003656
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003656&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott A Becker & Bernhard O Palsson, 2008. "Context-Specific Metabolic Networks Are Consistent with Experiments," PLOS Computational Biology, Public Library of Science, vol. 4(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. André Schultz & Amina A Qutub, 2016. "Reconstruction of Tissue-Specific Metabolic Networks Using CORDA," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-33, March.
    2. Sourav Chowdhury & Daniel C. Zielinski & Christopher Dalldorf & Joao V. Rodrigues & Bernhard O. Palsson & Eugene I. Shakhnovich, 2023. "Empowering drug off-target discovery with metabolic and structural analysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Anne Richelle & Austin W T Chiang & Chih-Chung Kuo & Nathan E Lewis, 2019. "Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-19, April.
    4. Yuefan Huang & Vakul Mohanty & Merve Dede & Kyle Tsai & May Daher & Li Li & Katayoun Rezvani & Ken Chen, 2023. "Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Oveis Jamialahmadi & Sameereh Hashemi-Najafabadi & Ehsan Motamedian & Stefano Romeo & Fatemeh Bagheri, 2019. "A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-29, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.