IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003563.html
   My bibliography  Save this article

Active Learning to Understand Infectious Disease Models and Improve Policy Making

Author

Listed:
  • Lander Willem
  • Sean Stijven
  • Ekaterina Vladislavleva
  • Jan Broeckhove
  • Philippe Beutels
  • Niel Hens

Abstract

Modeling plays a major role in policy making, especially for infectious disease interventions but such models can be complex and computationally intensive. A more systematic exploration is needed to gain a thorough systems understanding. We present an active learning approach based on machine learning techniques as iterative surrogate modeling and model-guided experimentation to systematically analyze both common and edge manifestations of complex model runs. Symbolic regression is used for nonlinear response surface modeling with automatic feature selection. First, we illustrate our approach using an individual-based model for influenza vaccination. After optimizing the parameter space, we observe an inverse relationship between vaccination coverage and cumulative attack rate reinforced by herd immunity. Second, we demonstrate the use of surrogate modeling techniques on input-response data from a deterministic dynamic model, which was designed to explore the cost-effectiveness of varicella-zoster virus vaccination. We use symbolic regression to handle high dimensionality and correlated inputs and to identify the most influential variables. Provided insight is used to focus research, reduce dimensionality and decrease decision uncertainty. We conclude that active learning is needed to fully understand complex systems behavior. Surrogate models can be readily explored at no computational expense, and can also be used as emulator to improve rapid policy making in various settings.Author Summary: Mathematical models are used as pragmatic tools to inform policy makers on public health interventions and many non-health problems. Considerable efforts have been made to build realistic simulation models. Understanding the systems behavior and the effect of model assumptions and parameter values on the results before drawing conclusions for policy is crucial. Common and edge manifestations of complex model runs should be analyzed and therefore we present an active learning approach, also known as a sequential design of experiments, based on surrogate modeling and a model-guided experimentation process. First, we illustrate our approach with an individual-based model for influenza and demonstrate the benefits compared to current complex modeling practices. Second, we establish the power of our approach with a high dimensional model with correlated inputs to explore cost-effectiveness of varicella-zoster vaccination programs. The most influential variables are identified with the aim to reduce dimensionality and decrease decision uncertainty. We also elaborate on the use of surrogate models as an emulator to improve rapid policy making in various settings. To this purpose we provide an interactive platform through which the reader can explore instantaneously the sensitivity of the surrogate models to parameter changes for both our applications.

Suggested Citation

  • Lander Willem & Sean Stijven & Ekaterina Vladislavleva & Jan Broeckhove & Philippe Beutels & Niel Hens, 2014. "Active Learning to Understand Infectious Disease Models and Improve Policy Making," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-10, April.
  • Handle: RePEc:plo:pcbi00:1003563
    DOI: 10.1371/journal.pcbi.1003563
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003563
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003563&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.