IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003399.html
   My bibliography  Save this article

Environmental Influence on the Evolution of Morphological Complexity in Machines

Author

Listed:
  • Joshua E Auerbach
  • Josh C Bongard

Abstract

Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans.Author Summary: The evolution of complexity, a central issue of evolutionary theory since Darwin's time, remains a controversial topic. One particular question of interest is how the complexity of an organism's body plan (morphology) is influenced by the complexity of the environment in which it evolved. Ideally, it would be desirable to perform investigations on living organisms in which environmental complexity is under experimental control, but our ability to do so in a limited timespan and in a controlled manner is severely constrained. In lieu of such studies, here we employ computer simulations capable of evolving the body plans of virtual organisms to investigate this question in silico. By evolving virtual organisms for locomotion in a variety of environments, we are able to demonstrate that selecting for locomotion causes more complex morphologies to evolve than would be expected solely due to random chance. Moreover, if increased complexity incurs a cost (as it is thought to do in biology), then more complex environments tend to lead to the evolution of more complex body plans than those that evolve in a simpler environment. This result supports the idea that the morphological complexity of organisms is influenced by the complexity of the environments in which they evolve.

Suggested Citation

  • Joshua E Auerbach & Josh C Bongard, 2014. "Environmental Influence on the Evolution of Morphological Complexity in Machines," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-17, January.
  • Handle: RePEc:plo:pcbi00:1003399
    DOI: 10.1371/journal.pcbi.1003399
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003399
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003399&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.