IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003070.html
   My bibliography  Save this article

Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury

Author

Listed:
  • Alexey Solovyev
  • Qi Mi
  • Yi-Ting Tzen
  • David Brienza
  • Yoram Vodovotz

Abstract

Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation.Author Summary: Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). To gain insight into the pathogenesis and effective treatment of post-SCI pressure ulcers, we constructed a computer simulation in a hybrid modeling platform which combines both equation- and agent-based models. The model was calibrated using skin blood flow data and reactive hyperemia in response to pressure and predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects. The methodology we present in the paper may eventually be used as a novel platform to study post-SCI ulcer formation, as well as serving as a framework for other biological contexts in which agent-based models and mathematical equations can be integrated.

Suggested Citation

  • Alexey Solovyev & Qi Mi & Yi-Ting Tzen & David Brienza & Yoram Vodovotz, 2013. "Hybrid Equation/Agent-Based Model of Ischemia-Induced Hyperemia and Pressure Ulcer Formation Predicts Greater Propensity to Ulcerate in Subjects with Spinal Cord Injury," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
  • Handle: RePEc:plo:pcbi00:1003070
    DOI: 10.1371/journal.pcbi.1003070
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003070
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003070&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.