IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002945.html
   My bibliography  Save this article

Policy Resistance Undermines Superspreader Vaccination Strategies for Influenza

Author

Listed:
  • Chad R Wells
  • Eili Y Klein
  • Chris T Bauch

Abstract

Theoretical models of infection spread on networks predict that targeting vaccination at individuals with a very large number of contacts (superspreaders) can reduce infection incidence by a significant margin. These models generally assume that superspreaders will always agree to be vaccinated. Hence, they cannot capture unintended consequences such as policy resistance, where the behavioral response induced by a new vaccine policy tends to reduce the expected benefits of the policy. Here, we couple a model of influenza transmission on an empirically-based contact network with a psychologically structured model of influenza vaccinating behavior, where individual vaccinating decisions depend on social learning and past experiences of perceived infections, vaccine complications and vaccine failures. We find that policy resistance almost completely undermines the effectiveness of superspreader strategies: the most commonly explored approaches that target a randomly chosen neighbor of an individual, or that preferentially choose neighbors with many contacts, provide at best a relative improvement over their non-targeted counterpart as compared to when behavioral feedbacks are ignored. Increased vaccine coverage in super spreaders is offset by decreased coverage in non-superspreaders, and superspreaders also have a higher rate of perceived vaccine failures on account of being infected more often. Including incentives for vaccination provides modest improvements in outcomes. We conclude that the design of influenza vaccine strategies involving widespread incentive use and/or targeting of superspreaders should account for policy resistance, and mitigate it whenever possible. Author Summary: Superspreaders are the small number of individuals responsible for the majority of infections. Theoretical models have shown how vaccinating superspreaders can be a highly efficient way to control disease. However, these models neglect behavior by assuming that superspreaders will always agree to be vaccinated. This is a problematic assumption for influenza vaccination, which is voluntary in most populations, and for which vaccine coverage is often suboptimal. We developed a model of seasonal influenza transmission on a network of individuals who make decisions about whether or not to get vaccinated based on known determinants of vaccine uptake, such as personal infection history, perceived vaccine risks, and social influences. We found that, because of feedbacks between disease spread and individual vaccinating behavior, attempts to boost vaccine coverage in superspreaders through the use of incentives or recruiting by social contacts are almost completely undermined by such feedbacks. For example, higher vaccine uptake in superspreaders reduces influenza incidence, which in the next season reduces the perceived need for vaccination among non-superspreaders, who then do not become vaccinated as much. Our results suggest that the design of potential strategies to reach influenza superspreaders should account for behavioral feedbacks, since they may blunt policy effectiveness.

Suggested Citation

  • Chad R Wells & Eili Y Klein & Chris T Bauch, 2013. "Policy Resistance Undermines Superspreader Vaccination Strategies for Influenza," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1002945
    DOI: 10.1371/journal.pcbi.1002945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002945
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.