IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002702.html
   My bibliography  Save this article

The p7 Protein of Hepatitis C Virus Forms Structurally Plastic, Minimalist Ion Channels

Author

Listed:
  • Danielle E Chandler
  • François Penin
  • Klaus Schulten
  • Christophe Chipot

Abstract

Hepatitis C virus (HCV) p7 is a membrane-associated oligomeric protein harboring ion channel activity. It is essential for effective assembly and release of infectious HCV particles and an attractive target for antiviral intervention. Yet, the self-assembly and molecular mechanism of p7 ion channelling are currently only partially understood. Using molecular dynamics simulations (aggregate time 1.2 µs), we show that p7 can form stable oligomers of four to seven subunits, with a bias towards six or seven subunits, and suggest that p7 self-assembles in a sequential manner, with tetrameric and pentameric complexes forming as intermediate states leading to the final hexameric or heptameric assembly. We describe a model of a hexameric p7 complex, which forms a transiently-open channel capable of conducting ions in simulation. We investigate the ability of the hexameric model to flexibly rearrange to adapt to the local lipid environment, and demonstrate how this model can be reconciled with low-resolution electron microscopy data. In the light of these results, a view of p7 oligomerization is proposed, wherein hexameric and heptameric complexes may coexist, forming minimalist, yet robust functional ion channels. In the absence of a high-resolution p7 structure, the models presented in this paper can prove valuable as a substitute structure in future studies of p7 function, or in the search for p7-inhibiting drugs. Author Summary: Hepatitis C remains a serious global health problem affecting more than 2% of the world's population, and current therapies are effective in only a subset of patients, necessitating an ongoing search for new treatments. The p7 viroporin is considered to be an attractive possible drug target, but rational drug design is hampered by the absence of a high-resolution p7 structure. In this paper, we explore possible structures of oligomeric p7 channels, and discuss the strengths and shortcomings of these models with respect to experimentally determined properties, such as pore-lining residues, ion conductance, and compatibility with low-resolution electron microscopy images. Our results present an image of p7 as a rudimentary, minimalistic ion channel, capable of existing in multiple oligomeric states but exhibiting a bias towards hexamers and heptamers. We believe that the work presented here will be valuable for future research by providing plausible 3-dimensional atomic-resolution models for the visualization of the p7 viroporin and serve as a basis for future computational studies.

Suggested Citation

  • Danielle E Chandler & François Penin & Klaus Schulten & Christophe Chipot, 2012. "The p7 Protein of Hepatitis C Virus Forms Structurally Plastic, Minimalist Ion Channels," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
  • Handle: RePEc:plo:pcbi00:1002702
    DOI: 10.1371/journal.pcbi.1002702
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002702
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002702&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.