IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002648.html
   My bibliography  Save this article

How Entorhinal Grid Cells May Learn Multiple Spatial Scales from a Dorsoventral Gradient of Cell Response Rates in a Self-organizing Map

Author

Listed:
  • Stephen Grossberg
  • Praveen K Pilly

Abstract

Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC) input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs) whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs), both increase along this axis. Slower (faster) subthreshold MPOs and slower (faster) EPSPs correlate with larger (smaller) grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic “neural relativity” that may clarify how episodic memories are learned. Author Summary: Spatial navigation is a critical competence of all higher mammals, and place cells in the hippocampus represent the large spaces in which they navigate. Recent modeling clarifies how this may occur via interactions between grid cells in the medial entorhinal cortex (MEC) and place cells. Grid cells exhibit hexagonal grid firing patterns across space and come in multiple spatial scales that increase along the dorsoventral axis of MEC. Signals from multiple scales of grid cells combine to activate place cells that represent much larger spaces than grid cells. This article shows how a gradient of cell response rates along the dorsoventral axis enables the learning of grid cells with the observed gradient of spatial scales as an animal navigates realistic trajectories. The observed gradient of grid cell membrane potential oscillation frequencies is shown to be a direct result of the gradient of response rates. This gradient mechanism for spatial learning is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections, thereby clarifying why both spatial and temporal representations are found in the entorhinal-hippocampal system.

Suggested Citation

  • Stephen Grossberg & Praveen K Pilly, 2012. "How Entorhinal Grid Cells May Learn Multiple Spatial Scales from a Dorsoventral Gradient of Cell Response Rates in a Self-organizing Map," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-31, October.
  • Handle: RePEc:plo:pcbi00:1002648
    DOI: 10.1371/journal.pcbi.1002648
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002648
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002648&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.