IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002523.html
   My bibliography  Save this article

Conformational Spread in the Flagellar Motor Switch: A Model Study

Author

Listed:
  • Qi Ma
  • Dan V Nicolau Jr
  • Philip K Maini
  • Richard M Berry
  • Fan Bai

Abstract

The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors that control swimming can switch direction in response to very small changes in the concentration of the signaling protein CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching, locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch response. We parameterized the model using experimental measurements, finding excellent agreement with published data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification. These results showed how cells can combine elements of analog and digital control to produce switches that are simultaneously sensitive and reliable. Author Summary: Bacteria swim to find nutrients or to avoid toxins. Their swimming is powered by the rotation of flagella (hair-like structures) that act as propellers. Each flagellum is driven by a rotary molecular engine (the bacterial flagellar motor) that can rotate in either a counterclockwise or clockwise direction and switches between the two directions are frequent and rapid. Although the motor has been studied in detail, we do not understand how it is able to reliably switch direction – a critical function that gives bacteria the ability to steer. In this paper we examined a mathematical model describing how a potential gearbox in the motor might work inside a ring of identical proteins. We compared the output of this model with experimental data on switching speed and other measures of motor function, finding excellent agreement. This is an exciting finding not only because the operation of the motor itself is important, but also because protein complexes play an important and ubiquitous role in cellular signal transduction and therefore, “conformational spread” may be a widespread mechanism for signal propagation in biology.

Suggested Citation

  • Qi Ma & Dan V Nicolau Jr & Philip K Maini & Richard M Berry & Fan Bai, 2012. "Conformational Spread in the Flagellar Motor Switch: A Model Study," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-16, May.
  • Handle: RePEc:plo:pcbi00:1002523
    DOI: 10.1371/journal.pcbi.1002523
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002523
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002523&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.