IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002244.html
   My bibliography  Save this article

A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms

Author

Listed:
  • Suzanne Renick Gallagher
  • William Coon
  • Kristin Donley
  • Abby Scott
  • Debra S Goldberg

Abstract

Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors. Author Summary: We have designed and implemented a curriculum to teach basic computational biology to advanced high school students. The curriculum includes an introduction to the concept of algorithms, an overview of the Basic Local Alignment Search Tool (BLAST) algorithm used to compare DNA sequences, and methods for building phylogenetic trees. We taught this curriculum in advanced biology classes at two local high schools. As a result of this, we were able to give many students an appreciation of the role computers play in biology and an idea of why computational methods are needed in biological research. We found that while the high school students lacked the necessary background in math and computer science to be able to write their own algorithms, they were able to use existing algorithms, analyze them, and compare the results. We also encountered a number of challenges that could arise in other attempts to teach computational biology to students at this level, whether using our curriculum or another. We discuss each of these challenges and possible ways that they can be overcome.

Suggested Citation

  • Suzanne Renick Gallagher & William Coon & Kristin Donley & Abby Scott & Debra S Goldberg, 2011. "A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-7, October.
  • Handle: RePEc:plo:pcbi00:1002244
    DOI: 10.1371/journal.pcbi.1002244
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002244
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002244&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.