IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002221.html
   My bibliography  Save this article

A Neurodynamic Account of Spontaneous Behaviour

Author

Listed:
  • Jun Namikawa
  • Ryunosuke Nishimoto
  • Jun Tani

Abstract

The current article suggests that deterministic chaos self-organized in cortical dynamics could be responsible for the generation of spontaneous action sequences. Recently, various psychological observations have suggested that humans and primates can learn to extract statistical structures hidden in perceptual sequences experienced during active environmental interactions. Although it has been suggested that such statistical structures involve chunking or compositional primitives, their neuronal implementations in brains have not yet been clarified. Therefore, to reconstruct the phenomena, synthetic neuro-robotics experiments were conducted by using a neural network model, which is characterized by a generative model with intentional states and its multiple timescales dynamics. The experimental results showed that the robot successfully learned to imitate tutored behavioral sequence patterns by extracting the underlying transition probability among primitive actions. An analysis revealed that a set of primitive action patterns was embedded in the fast dynamics part, and the chaotic dynamics of spontaneously sequencing these action primitive patterns was structured in the slow dynamics part, provided that the timescale was adequately set for each part. It was also shown that self-organization of this type of functional hierarchy ensured robust action generation by the robot in its interactions with a noisy environment. This article discusses the correspondence of the synthetic experiments with the known hierarchy of the prefrontal cortex, the supplementary motor area, and the primary motor cortex for action generation. We speculate that deterministic dynamical structures organized in the prefrontal cortex could be essential because they can account for the generation of both intentional behaviors of fixed action sequences and spontaneous behaviors of pseudo-stochastic action sequences by the same mechanism. Author Summary: Various psychological observations have suggested that the spontaneously generated behaviors of humans reflect statistical structures extracted via perceptual learning of everyday practices and experiences while interacting with the world. Although those studies have further suggested that such acquired statistical structures use chunking, which generates a variety of complex actions recognized in compositional manner, the underlying neural mechanism has not been clarified. The current neuro-robotics study presents a model prediction for the mechanism and an evaluation of the model through physically grounded experiments on action imitation learning. The model features learning of a mapping from intentional states to action sequences based on multiple timescales dynamics characteristics. The experimental results suggest that deterministic chaos self-organized in the slower timescale part of the network dynamics is responsible for generating spontaneous transitions among primitive actions by reflecting the extracted statistical structures. The robustness of action generation in a noisy physical environment is preserved. These results agree with other neuroscience evidence of the hierarchical organization in the cortex for voluntary actions. Finally, as presented in a discussion of the results, the deterministic cortical dynamics are presumed crucial in generating not only more intentional fixed action sequences but also less intentional spontaneously transitive action sequences.

Suggested Citation

  • Jun Namikawa & Ryunosuke Nishimoto & Jun Tani, 2011. "A Neurodynamic Account of Spontaneous Behaviour," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
  • Handle: RePEc:plo:pcbi00:1002221
    DOI: 10.1371/journal.pcbi.1002221
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002221
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002221&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.