Author
Listed:
- Nicholas J P Wiebe
- Irmtraud M Meyer
Abstract
The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular environment.Author Summary: Many non-coding genes exert their function via an RNA structure which starts emerging while the RNA sequence is being transcribed from the genome. The resulting folding pathway is known to depend on a variety of features such as the transcription speed, the concentration of various ions and the binding of proteins and other molecules. Not all of these influences can be adequately captured by the existing computational methods which try to replicate what happens in vivo. So far, it has been challenging to experimentally investigate co-transcriptional folding pathways in vivo and only little data from in vitro experiments exists. In order to investigate if functionally similar RNA sequences from different organisms fold in a similar way, we have developed a new computational method, called Transat, which does not require the detailed computational modeling of the cellular environment. We show in a comprehensive analysis that our method is capable of detecting known structural features and provide evidence that structural features of the in vivo folding pathways have been conserved for several biologically interesting classes of RNA sequences.
Suggested Citation
Nicholas J P Wiebe & Irmtraud M Meyer, 2010.
"Transat—A Method for Detecting the Conserved Helices of Functional RNA Structures, Including Transient, Pseudo-Knotted and Alternative Structures,"
PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-22, June.
Handle:
RePEc:plo:pcbi00:1000823
DOI: 10.1371/journal.pcbi.1000823
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Solomon Shiferaw Beyene & Tianyi Ling & Blagoj Ristevski & Ming Chen, 2020.
"A novel riboswitch classification based on imbalanced sequences achieved by machine learning,"
PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-23, July.
- Divya Ojha & Ambadas B. Rode, 2025.
"Rational development of FMN-based orthogonal riboswitch that functions in response to specific non-cognate ligand,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000823. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.